• Title, Summary, Keyword: Hydrogen Storage alloys

Search Result 83, Processing Time 0.049 seconds

Hydrogen Storage Technologies Using Hydrogen Storage Alloys (수소저장합금을 이용한 수소저장 기술)

  • Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.75-86
    • /
    • 2001
  • In this paper it has been compared briefly the hydrogen storage using hydrogen storage alloys with other technologies and introduced the general properties of hydrogen storage alloys. The recent research trends and activities related to hydrogen storage alloys were given here.

  • PDF

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.

Improvement of Mg-based Hydrogen Storage Alloys by Mechanochemical Ball Milling (기계화학적 볼밀링을 이용한 Mg 합금의 수소저장능 향상 연구)

  • 안중호;최영묵
    • Journal of Korean Powder Metallurgy Institute
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2002
  • The mechanochemical milling of Mg and $Mg_2Ni$ alloys were carried out to examine the enhancement of hydrogen storage properties of Mg alloys. The hydroge characteristics of the ball-milled products were evaluated with a Sievert-type apparatus and electrochemical test. Various intermediate compounds were obtained by chemical reactions induced during the ball milling of Mg of $Mg_2Ni$ alloys with C, Ni, $Ni_2Cl$ and $Ca_2Cl$. The system of $Mg_2Ni$ with 10 wt% C improved markedly the kinetics of hydrogen absorption, while the hydrogen capacities were practically unchanged. The hydrogen storage alloys such as Mg-Ca can be successfully.

Development of a Thermal Model for Discharge Behavior of MH Hydrogen Storage Vessels (MH 수소저장 장치의 방출시 열거동 모사 수치 모델 개발)

  • O, Sang-Kun;Cho, Sung-Wook;Yi, Kyung-Woo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.178-183
    • /
    • 2011
  • Metal hydride alloys are a promising type of material in hydrogen storage applications, allowing for low-pressure, high-density storage. However, while many studies are being performed on enhancing the hydrogen storage properties of such alloys, there has been little research on large-scale storage vessels which make use of the alloys. In particular, large-scale, high-density storage devices must make allowances for the inevitable generation or absorption of heat during use, which may negatively impact functioning properties of the alloys. In this study, we develop a numerical model of the discharge properties of a high-density MH hydrogen storage device. Discharge behavior for a pilot system is observed in terms of temperature and hydrogen flow rates. These results are then used to build a numerical model and verify its calculated predictions. The proposed model may be applied to scaled-up applications of the device, as well as for analyses to enhance future device designs.

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy (대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성)

  • Kim, Jinho;Han, Kyusung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.5
    • /
    • pp.367-372
    • /
    • 2013
  • Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

A Study on the Electrochemical Hydrogenation Reaction Mechanism of the Laves Phase Hydrogen Storage Alloys (Laves phase계 수소저장합금의 전기화학적 수소화 반응 매카니즘에 관한 연구)

  • Lee, Ji-Youl;Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.31-41
    • /
    • 1997
  • In order to investigate the mechanism of electrochemical hydrogenation reaction on Zr-based Laves phase hydrogen storage alloy electrodes, electrochemical charge/discharge characteristics, potentiostatic/dynamic polarizations and electrocehmical impedance spectroscopy(EIS) of Zr-Ti-Mn-Ni and Zr-Ti-Mn-Ni-M(M=Fe, Co, Al) alloys were examined. Electrochemical discharge capacities of the alloys were quite different with gas charge capacities. Therefore, it was considered that discharge capacities of the alloys depend on electrochemical kinetic factors rather then thermodynamic ones. Discharge efficiencies were increased linearly with exchange current densities. The results of potentiostatic/dynamic polarization measurements showed that electrochemical charge and discharge reaction of Zr-based Laves phase hydrogen storage alloys is controlled by charge transfer process at the electrode surface. The EIS measurements also confirmed this result.

  • PDF

Study on the Application for Hydrogen Storage Tank of MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) Alloys Containing Excess Zr (과잉 Zr을 첨가한 MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) 합금의 수소용기 적용에 관한 연구)

  • Kang, Kil-Ku;Park, Sung-Gap;Kang, Sei-Sun;Kwon, Ho-Young
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.624-633
    • /
    • 2002
  • In order to improve the hydrogen storage capacity and the activation properties of the hydrogen storage alloys, the rare-earth metal alloy series, MmN $i_{4.5}$M $n_{0.5}$Z $r_{x}$(x=0, 0.025, 0.05, 0.1), are prepared by adding excess Zr in MmN $i_{4.5}$M $n_{0.5}$ alloy. The various parts in hydrogen storage vessel consisted of copper pipes reached the setting temperature within 4~5 minutes after heat addition, which indicated that storage vessel had a good heat conductivity required in application. The performance test on storage vessel filled with rare-earth metal alloys of 1000 gr was also conducted after hydrogen charging for 10 min at $18^{\circ}C$ under 10 atm. It showed that the average capacity of discharged hydrogen volume was found to be for $MmNi_{4.5}$ $Mn_{0.5}$ and $MmNi_{4.5}$ $Mn_{x}$ 0.5/$Zr_{samples}$ indicated that the released amount of hydrogen for this $AB_{5}$ type alloys was more than 92 % of theoretic value, and also it was found that the optimum discharging temperature for obtaining an appropriate pressure of 3 atm was determined to be $V^{\circ}C$ for $MmNi_{4.5}$ $Mn_{0.5}$$Zr_{x}$(x=0, 0.025, 0.05, 0.1) hydrogen storage alloys. The released amount of these hydrogen storage samples was 125 $\ell$ , 122.4 $\ell$ and 108.15 $\ell$/kg for $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{0.025}$ $MmNi_{4.5}$M $n_{0.5}$Z $r_{0.05}$, and MmN $i_{4.5}$ Mn_0.5$Zr_{0}$, at $70^{\circ}C$ respectively. Amount of the 2nd phases increase with increase on Zr contents in $MmNi_{4.5}$$Mn_{0.5}$ $Zr_{ 0.1}$/ alloy. This phenomenon indicates that$ ZrNi_3$ in $MmNi_{4.5}$ $Mn_{0.5}$ $Zr_{x}$ / phase, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage. As the Zr contents increase, the activation time and the plateau pressure decreases and sloping of the plateau pressure increases.creases.eases.s.

Study on the Hydrogenation Properties of MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) Alloys Containing the Zr by Excess (과잉의 Zr을 첨가한 MmNi4.5Mn0.5Zrx(x=0, 0.025, 0.05, 0.1) 합금의 수소화특성에 관한 연구)

  • Kang, Kil-Ku;Park, Sung-Gap;Kang, Sei-Sun;Kwon, Ho-Young
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.617-623
    • /
    • 2002
  • In order to improve the hydrogen storage capacity and the activation properties of the hydrogen storage alloys, the rare-earth metal alloy series, $MmNi_{ 4.5}$$Mn_{0.5}$ $Zr_{x}$ (x=0, 0.025, 0.05, 0.1), are prepared by adding the excess Zr in $MmNi_{4.5}$ $Mn_{0.5}$ / alloy for the strong resistance to intrinsic degradation. The hydrogen storage alloys of rare-earth metal such as $LaNi_{5}$ , and $MmNi_{5}$X and $MmNi_{4.5}$ /$_Mn{0.5}$ alloys which substituted La by misch metal properties were characterized as well. The hydrogen storage alloys were produced by melting each metal mixture in arc melting furnace, and the as-cast alloys were heat-treated at $1100^{\circ}C$ for 10 hr. The major elements of misch metal(Mm) were La, Ce, Pr and Nd with some impurities less than 1wt.% determined by ICP-AES. X-ray diffraction indicated that the structure for these samples was a single phase of hexagonal with $CaCu^{5}$ type. As the Zr contents increases, the activation time and the plateau pressure decrease and sloping of the plateau pressure increase. Amount of the 2nd phases increases with increase in Zr contents in $MmNi_{ 4.5}$$Mn_{0.5}$ $Zr_{0.1}$ alloy, This phenomenon indicated that $ZrNi_3$ in this phase, which shows the maximum storage capacity and the strong resistance to intrinsic degradation, is considered as a proper alloy for hydrogen storage..

The Hydrogen Storage Characteristics of Ti-Cr-V Alloys (Ti-Cr-V 합금의 수소저장 특성)

  • Cho, Sung-Wook;Han, Chang-Suck;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.1
    • /
    • pp.31-37
    • /
    • 1998
  • The crystal structures, the lattice parameters and the characteristics of hydrogen storage at 303K has been investigated in the ternary alloys of Ti-Cr-V system. All of these alloys, in the range of this study, have shown a bcc structure. The hydrogen storage capacities and the effective hydrogen storage capacities of the alloys were strongly dependant on the composition ratio of Ti/Cr, showing their maximum values at the Ti/Cr ratio of about 0.75. It was also found that the lattice parameters of the alloys increased linearly with an increase of the Ti/Cr ratio. The differences in affinities to hydrogen and lattice parameters of pure metal states of the three elements have been adopted in oder to explain the Ti/Cr ratio dependance of the lattice parameter and hydrogen storage capacity of the alloys.

  • PDF

A Study on the Electrode Charcteristics of the Fluornated AB$_2$ Type Hydrogen Storage Alloys (불화 처리된 AB$_2$계 수소저장합금의 전극특성에 관한 연구)

  • 박호영;이명호;조원일;조병래;이성래;주재백;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.4
    • /
    • pp.262-271
    • /
    • 1997
  • Nickel-matal hydride(Ni-MH) batteries are receiving attention as non-pollunting. high performance rehargeable energy stoage system. The performance of Ni-Mh is significantly influenced by the hydrogen storage alloy materiels used as an anode material. Recently, having discharge capacities higher than the $AB_5$-type hydrogen storage alloys, the Zr-based $AB_2$-Type hydrogen storage alloys has remaining problems regarding cycle life and self-dischareg. These problems need to be solved by improvements in the alloy design and/or surface treatment. This work investiggates the effects the effects of surface property by fluorination on $Zr_{0.7}Ti_{0.3}V_{0.4}Mn_{0.4}Ni{1.2}$ composittion $AB_2$-Type hydrogen storage alloys. EPMA, SEM and AES techniques were used for surface analysis, and the crystal structure was characterized by constant current cycling test and potential sweep methods. Fluorination was found to be effective when La-was incorporated into the alloy, and has unique morphology, higher reactivity, and at the same time formed a protective film. Through, fluorination, the cycle life of an electrode was found to increase significantly, charge/discharge characteristics of the electrode the potential difference between the charge/discharge plateau, i.e polarization(overpotential)were improved.

  • PDF