• 제목, 요약, 키워드: IPMSM

검색결과 501건 처리시간 0.041초

철도차량용 영구자석 동기전동기의 열해석 기법 연구 (Investigation of a Thermal Analysis Method for IPMSM in Railway Vehicles)

  • 박찬배;이형우;이병송
    • 한국철도학회논문집
    • /
    • v.16 no.2
    • /
    • pp.99-103
    • /
    • 2013
  • 본 논문에서는 철도차량 추진용 매입형 영구자석 동기전동기(Interior Permanent Magnet Synchronous Motor, IPMSM)의 운전 중 열 발생 특성 분석을 위한 열해석 기법 연구를 수행하였다. IPMSM의 구동 중에 권선, 코어, 영구자석에서 발생되는 과도한 열은 IPMSM의 장시간 연속운전을 어렵게 만들기 때문에, IPMSM에서 발생된 열의 효율적인 냉각이 중요하다. 따라서 본 연구에서는 IPMSM의 냉각장치 적용을 위한 선행 연구로써 IPMSM 의 열 발생 특성 분석을 위하여 IPMSM의 각 구성품에 대한 열전달 계수를 도출하고, 열 등가회로를 구성하여 열해석을 수행하는 열해석 기법 연구를 수행하였다. 또한 IPMSM 실 모델의 열 실험 데이터와의 비교를 통한 열해석 기법의 유효성 검증을 수행하였다.

600W급 Consequent Pole Type IPMSM 설계 및 특성 비교 (The Design and Characteristics Comparison of 600W Class Consequent Pole Type IPMSM)

  • 김규화;박병준;김용태;김규탁
    • 전기학회논문지
    • /
    • v.67 no.8
    • /
    • pp.1040-1046
    • /
    • 2018
  • The Permanent Magnet Synchronous Motor(PMSM) has various advantages. However, new types of research have been carried out because of rising prices of materials for rare earth magnets used in PMSM and also unstable supply. In this paper, we propose Consequent Pole(CP) type IPMSM for magnet reduction. The shape of CP type IPMSM stator was same with Basic model IPMSM. The design of the rotor shape was proceeded that CP type IPMSM achieved the same output as the basic model IPMSM. Finally, the selected model and IPMSM were compared and discussed.

다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM Drive using Multi AFLC)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

적응 FLC-FNN 제어기에 의한 IPMSM의 효율 최적화 제어 (Efficiency Optimization Control of IPMSM with Adaptive FLC-FNN Controller)

  • 최정식;고재섭;정동화
    • 전기학회논문지P
    • /
    • v.56 no.2
    • /
    • pp.74-82
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning control fuzzy neural network (AFLC-FNN) controller. In order to maximize the efficiency in such applications, this paper proposes the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC-FNN controller. Also, this paper proposes speed control of IPMSM using AFLC-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled AFLC-FNN controller, the operating characteristics controlled by efficiency optimization control are examined in detail.

철손밀도 분포에 의한 열원이 고려된 3차원 열등가회로망을 이용한 경량전철 구동용 110kW급 IPMSM의 열 특성 연구 (A Study on the Thermal Characteristics of 110kW-class IPMSM for Light Railway Transit using the 3-Dimensional Thermal Equivalent Network considering Heat Source by Iron Loss Density Distributions)

  • 박찬배
    • 전기학회논문지
    • /
    • v.62 no.7
    • /
    • pp.1038-1044
    • /
    • 2013
  • A research on thermal analysis method is conducted for the characterization of heat generation during operation of Interior Permanent Magnet Synchronous Motor(IPMSM) for Light Railway Transits(LRT) in this paper. Efficient cooling of the heat generated in the IPMSM is important because the excessive heat generated from the winding, core and permanent magnet makes it harder for a long time continuous operation of IPMSM. Therefore, in order to analyze the heat generation characteristics of the 110kW-class IPMSM as advanced research for application the IPMSM to the cooling device, the heat transfer coefficients for each component of the 110 kW-class IPMSM were derived and the thermal equivalent network was configured to perform the thermal analysis in this study. Finally, the 110kW-class IPMSM prototype is made and a comparative verification between the test data and the thermal analysis results through its various performance tests are carried out.

적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어 (Maximum Torque Control of IPMSM with Adoptive Leaning Fuzzy-Neural Network)

  • 정동화;고재섭;최정식
    • 조명전기설비학회논문지
    • /
    • v.21 no.5
    • /
    • pp.32-43
    • /
    • 2007
  • IPMSM은 하중에 비하여 고출력으로 인하여 전기자동차에 널리 보급되고 있다. 본 논문은 적응 학습 퍼지-신경회로망과 ANN을 이용한 IPMSM드라이브의 최대토크 제어를 제시한다. 이러한 제어 방법은 인버터의 정격전류 및 전압값의 범위를 고려한 전속도 영역에 적용 된다. 본 논문은 적응학습 퍼지-신경회로망을 이용하여 IPMSM의 속도제어와 ANN을 이용하여 속도를 추정을 제시한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정을 제시하는데 사용된다. 제시된 제어 알고리즘은 적응학습 퍼지-신경회로망과 ANN 제어기를 IPMSM 드라이브에 적용된다. 최대토크에 의해 제어된 동작 특성은 세부적으로 실험한다. 또한 본 논문은 적응 학습 퍼지 신경회로망과 ANN의 효과를 결과 분석을 통해 제시한다.

트램-트레인 추진용 130kW급 IPMSM 설계 연구 (A Study on the Design of a 130kW-class IPMSM for Propulsion of Tram-Train)

  • 정거철;박찬배;이형우;이상돈;이주
    • 한국철도학회논문집
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2016
  • 본 논문은 트램-트레인 추진용 130kW급 IPMSM 설계에 관한 연구이다. 트램-트레인은 속도 가변 영역이 넓은 특성을 가지고 있다. 그러한 이유로 넓은 속도 가변 특성을 갖는 IPMSM으로 트램-트레인 추진용 전동기로 제안하고, 요구 견인력에 적합한 기초 모델을 설계하였다. IPMSM은 회전자의 형상에 따라 전자기적 특성 및 구조 특성이 상이하게 된다. 따라서 추가적으로 영구자석을 분할하여 Bridge를 추가한 형상으로 변경한 제안 모델도 설계하였다. 기초 모델과 제안 모델을 유한요소해석을 통해 부하 특성 및 구조 특성을 분석하여 최종적으로 트램-트레인 추진용 IPMSM에 만족하는 모델을 도출하였다.

Thermal Analysis of IPMSM with Water Cooling Jacket for Railway Vehicles

  • Park, Chan-Bae
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.882-887
    • /
    • 2014
  • In this paper, the water cooling method among the forced coolant cooling methods is considered to be applied to the 110kW-class IPMSM for railway vehicles. First, basic thermal property analysis of the IPMSM is conducted using the three-dimensional thermal equivalent network method. Then, based on the results of the basic thermal property analysis, some design requirements for the water cooling jacket are deduced and a basic design of the water cooling jacket is carried out. Finally, thermal equivalent circuit of the water cooling jacket is attached to the IPMSM's 3D thermal equivalent network and then, the basic thermal and effectiveness analysis are conducted for the case of applying the water cooling jacket to the IPMSM. In the future, the thermal variation trends inside the IPMSM by the application of the water cooling jacket is expected to be quickly and easily predicted even at the design step of the railway traction motor.

전기자동차용 80[kW] IPMSM 구동 시스템 개발 (Development of an 80[kW] IPMSM Drive System for an Electric Vehicle)

  • 김상훈;박내춘
    • 산업기술연구
    • /
    • v.33 no.A
    • /
    • pp.61-66
    • /
    • 2013
  • This paper is about the development of 80[kW] IPMSM(Interior Permanent Magnet Synchronous Motor) drive system for an electric vehicle. MTPA(Maximum Torque per Ampere) operation and flux-weakening operation for the optimal torque control of the IPMSM are presented. In this system, the torque control of the IPMSM is achieved by using the look-up table, which gives d- and q-aixs current references for the given torque command in the MTPA operation and flux-weakening operation regions. This look-up table is made by current injection tests, and from which the motor parameters are also estimated. The proposed system is verified by the experiment on the electric vehicle drive system, which consists of an 80[kW] IPMSM and an IGBT inverter.

  • PDF

전류 벡터 제어 방식에 따른 IPMSM의 온도 특성 해석 (Thermal Analysis of IPMSM According to Current Vector Control Method)

  • 계승현;정태석;조규원;장기봉;김규탁
    • 전기학회논문지
    • /
    • v.61 no.10
    • /
    • pp.1420-1425
    • /
    • 2012
  • Nowadays, Interior permanent magnet synchronous motor(IPMSM) which having high power density is much used for the vehicles. However, IPMSM causes a lot of losses because of high-speed driving and high current density, and temperature rising by iron loss and copper loss could reduce torque characteristics and durability of IPMSM. Therefore, analysis about thermal characteristics of IPMSM is required at design stage. In this paper, temperature characteristics according to current vector control method were analyzed through calculate thermal equivalent circuit. And calculated results were verified through comparing with the experiments.