• Title, Summary, Keyword: IPMSM

Search Result 501, Processing Time 0.051 seconds

Sensorless Speed Control of IPMSM Drive with ANN-based (ANN에 의한 IPMSM의 센서리스 속도제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.4
    • /
    • pp.154-160
    • /
    • 2003
  • This paper is proposed a ANN-based rotor position and speed estimation method for IPMSM by measuring the currents. Because the proposed estimator treats the estimated motor speed as the weights, it is possible to estimate motor speed to adapt back propagation algorithm with 2 layered neural network. The proposed control algorithm is applied to IPMSM drive system. The operating characteristics controlled by neural networks are examined in detail.

Compare with Torque Characteristic and Efficiency of IM and IPMSM for EV Drive (EV 구동용 유도전동기와 IPMSM의 토크특성 및 효율비교)

  • Jeon, Kyung-Won;Hahn, Sung-Chin
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1105-1106
    • /
    • 2011
  • 본 논문에서는 EV 구동용 유도전동기와 매입형 영구자석 동기전동기(IPMSM)의 동작특성과 효율을 비교하기 위하여 농형구조 유도전동기와 단층구조 IPMSM을 설계 하였다. EV 구동용 전동기는 정속운전 뿐만 아니라 가변속 운전이 필수적이므로 유도전동기는 V/f 제어, IPMSM은 약계자 제어를 사용하여 가변속 상태에서의 운전토크와 효율을 유한요소법을 이용하여 해석하였다.

  • PDF

Design the high Efficiency motor drive for drum wasing machine using IPMSM (IPMSM을 이용한 드럼세탁기용 고효율 구동 드라이브 설계)

  • Kong, Tae-Woong;Lee, Won-cheol;Lee, Byoung-Kuk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.13-15
    • /
    • 2007
  • The washing machine needs high torque for large load variation, Interior permanent magnet synchronous motor(IPMSM) is proper to adapt the washing machine system. However, IPMSM can operate the lower output power than the other permanent magnet synchronous motor(PMSM) when the motor control by the conventional control. This paper suggests adaptive motor control for IPMSM and experiments the washing machine system.

  • PDF

IPMSM Control Using Terminal Sliding Mode and BackStepping (터미널슬라이딩모드와 백스테핑을 이용한 IPMSM의 제어)

  • Mun, Byeong-Yun;Park, Seung-Gyu;kwak, Gun-Pyeong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1311-1312
    • /
    • 2015
  • 본 논문에서는 IPMSM의 제어에 있어거 터미널슬라이딩모드를 사용한다. 이용하여 슬라이딩 평면에서 유한한 시간 안에 오차가 0으로 수렴함을 보장하도록 제안한다. 그러나 IPMSM 부하외란의 비정합성 문제해결을 위해 백스테핑제어 기법을 적용하였다. 제안된 제어기는 백스테핑 PID제어기를 사용한 IPMSM제어 시스템과 비교할 때 강인한 특성을 갖는다.

  • PDF

Maximum Torque Control of IPMSM for Electric Vehicle Drive (전기자동차 구동을 위한 IPMSM의 최대 토크제어)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • Interior permanent magnet synchronous motor (IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM for electric vehicle drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ${^i}_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for electric vehicle drive, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam Su-Myung;Choi Jung-Sik;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using learning mechanism-fuzzy neural network(LM-FNN) controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_{d}$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using LM-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of IPMSM using LM-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the LM-FNN and ANN controller.

Maximum Torque Control of IPMSM Drive with ALM-FNN Controller (ALM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.110-114
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. In this paper maximum torque control of IPMSM drive using artificial intelligent(AI) controller is proposed. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using adaptive learning mechanism fuzzy neural network(ALM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the experimental results to verify the effectiveness of AI controller.

Multiobjective Optimal Double-Layer PM Rotor Structure Design of IPMSM by Response Surface Method and Finite Element Method (반응표면법을 이용한 매입형 영구자석 동기전동기의 이층 영구자석 회전자 구조 다목적 최적 설계)

  • Choi, Gil-Sun;Hahn, Sung-Chin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.123-130
    • /
    • 2010
  • In general, a design method based on the equivalent magnetic circuit has been used for basic design of Interior Permanent Magnet Synchronous Motor(IPMSM). However, the equivalent magnetic circuit method has difficulty in considering the arrangement of PM. IPMSM has high degree of freedom for PM rotor design. In this paper, we proposed the multiobjective optimal design method considering the arrangement of PM for the double-layer PM rotor structure that minimizes the torque ripple as well as maximizes the torque of IPMSM. The design variables of double-layer PM rotor structure are obtained from the Response Surface Method. Torque and torque ripple were calculated by Finite Element Method.

Maximum Torque Control of IPMSM Drive with Field Weakening Control (약계자 제어에 의한 IPMSM 드라이브의 최대토크 제어)

  • Chung, Dong-Hwa;Kim, Jong-Gwan;Park, Gi-Tae;Cha, Young-Doo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is posed maximum torque control of IPMSM for high speed drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for high speed drive, the operating characteristics controlled by maximum torque control are examined in detail by experiment.

Maximum Torque Control of IPMSM Drive with LM-FNN Controller (LM-FNN 제어기에 의한 IPMSM 드라이브의 최대토크 제어)

  • Nam, Su-Myeong;Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.566-569
    • /
    • 2005
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM drive using artificial intelligent(AI) controller. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AI controller. This paper is proposed speed control of IPMSM using learning mechanism fuzzy neural network(LM-FNN) and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled LM-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also. this paper is proposed the experimental results to verify the effectiveness of AI controller.

  • PDF