• Title, Summary, Keyword: IPMSM

Search Result 508, Processing Time 0.029 seconds

High Performance Control of SynRM Drive using Space Vector PWM of FAM-PI (FAM-PI의 공간벡터 PWM을 이용한 SynRM 드라이브의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.119-121
    • /
    • 2008
  • This paper is proposed a high Performance speed control of the synchronous reluctance motor through the SV-PWM(Space Vector Pulse Width Modulation) of FAM-PI(Fuzzy Adaptive Mechanism-PI). SV-PWM is controlled using FAM-PI control. SV-PWM can be maximum used maximum do link voltage and is excellent control method due to characteristic to reducing harmonic more than others. Fuzzy control has a advantage which can be robustly controlled. FAM-PI controller is changed fixed gain of PI controller using fuzzy adaptive mechanism(FAM) to match operating condition. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Torque Ripple Reduction based on Flux Linkage Harmonics Observer for an Interior PM Synchronous Motor including Back EMF Harmonics (왜곡된 역기전력을 갖는 매입형 영구자석 동기전동기의 쇄교자속 고조파 관측기를 이용한 토크리플 저감)

  • Jin, Yong-Sin;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.367-375
    • /
    • 2013
  • The mechanical vibration of a PM synchronous motor at low speeds due to the back emf harmonics may be serious problems in some application such as MDPS(Motor driven power steering), electric vehicles. In this paper, torque ripple reduction for an interior PM synchronous motor including back emf harmonics is proposed. The dq flux linkage harmonics of the permanent magnet are estimated on real time by using the dq currents of the real system and the model of the MRAS observer. Based on the estimated flux linkage harmonics, the dq harmonic currents for reducing the torque ripples are compensated on the dq reference currents. The estimation of the flux linkage harmonics by the MRAS observer and the torque ripple reduction of the proposed algorithm was verified by the simulation and experiment.

Characteristic Comparison of Brushless Motor Type for EPS System (전동식 조향장치용 영구자석형 브러시리스 모터의 타입별 특성 비교)

  • Lee, Min-Hwan;Kim, Il-Yong;Lee, Choong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • As enforced by the regulation on the improving fuel efficiency and increased the demand on green technology, many interests are focused on electric vehicles and hybrid vehicles. Thus the technology development in electrification of vehicle operation system, including steering and braking field, is actively progressive. Especially electric power steering substitutes for hydraulic power steering rapidly in the market, which is more complex and bigger in packaging volume compared with electric power steering system. The core component in electric power steering system is a motor, which is required to be silent and powerful to guarantee required system performance. Brushless synchronous motors are widely used and many variations of the motors are introduced in the market, while the performance of each type is not well defined or studied for electric power steering system. In this paper, recent developments in brushless synchronous motor are reviewed and compared applying finite element analysis in electromagnetic field. As results, each characteristic of different types of brushless synchronous motors is compared and summarized for optimized selection in electric power steering system.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

Prediction of Iron Loss Resistance by Using HILS System (HILS 시스템을 통한 IPMSM의 철손저항 추정)

  • Jeong, Kiyun;Kang, Raecheong;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • This paper presents the d-q axis equivalent circuit model of an interior permanent magnet (IPM) which includes the iron loss resistance. The model is implemented to be able to run in real-time on the FPGA-based HIL simulator. Power electronic devices are removed from the motor control unit (MCU) and a separated controller is interfaced with the real-time simulated motor drive through a set of proper inputs and outputs. The inputs signals of the HIL simulation are the gate driver signals generated from the controller, and the outputs are the winding currents and resolver signals. This paper especially presents iron loss prediction which is introduced by means of comparing the torque calculated from d-q axis currents and the desired torque; and minimizing the torque difference. This prediction method has stable prediction algorithm to reduce torque difference at specific speed and load. Simulation results demonstrate the feasibility and effectiveness of the proposed methods.

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.