• Title, Summary, Keyword: Inflammatory effect

Search Result 3,629, Processing Time 0.056 seconds

Study for Related Mechanism of Anti-Inflammatory Effect Induced by Neddle electrode electrical stimulation in Mouse Air Pouch Model. (Mouse Air Pouch Model에서 침전극 저주파치료로 유도된 소염 작용에 관한 연구)

  • Chung, Jin-Woo;Hwang, Hyun-Sook;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.2
    • /
    • pp.111-122
    • /
    • 2002
  • In oriental medicine, manual-acupuncture and electroacupuncture (EA) have been widely utilized to cure several inflammatory diseases such as arthritis. We designed this experiment to find neurochemical mechanism related to electroacupuncture induced anti-inflammatory effect on mouse air pouch model. EA with both low frequency (1 Hz) and high frequency (120 Hz) was treated after induction of inflammation in air pouch using injection of zymosan. To verify the role of opioid system in electroacupuncture-induced anti-inflammatory effect, naloxone (10 mg/kg) was pretreated. In addition, idazoxan (5 mg/kg) was pre-treated to evaluate the possible effect of endogenous adrenergic system in autonomic system on EA induced anti-inflammatory effect. As results of this study, naloxone pretreatment did not change the anti-inflammatory effect evoked by high frequency EA, while low frequency EA(1 Hz) induced anti-inflammatory effect was dramatically suppressed by naloxone pretreatment. These data indicated that endogenous opioid system might be extensively involve in anti-inflammatory effect evoked by not high frequency, but low frequency EA. However, idazoxan pretreatment did not produce any modulatory effect on both low and high frequency EA induced anti-inflammatory effect, suggesting that EA induced anti-inflammatory effect was not mediated by endogenous adrenergic system. In conclusion, these data strongly suggested that EA induced anti-inflammatory effect is mediated by endogenous opioid system, not endogenous adrenergic system.

  • PDF

The Review on the Study related to Anti-inflammatory Mechanism of Bee Venom Therapy (봉독요법(蜂毒療法)의 항염증(抗炎症) 기전(機轉) 연구(硏究)에 관(關)한 고찰(考察))

  • Choi, Jung-Sik;Park, Jang-Woo;Oh, Min-Seok
    • Journal of Haehwa Medicine
    • /
    • v.15 no.1
    • /
    • pp.141-160
    • /
    • 2006
  • The obtained results are summarized as follows 1. New findings are reporting year by year as for the study related to Anti-inflammatory mechanism of Bee Venom therapy. 2. The Anti-inflammatory effect of Bee Venom therapy is achieved through counterirritation, stimulations to adrenal cortex, immuno-regulation, antioxidation, removal of free radicals, modulation of AGP gene induction. 3. The chief components of Bee Venom related to Anti-inflammatory effect are Melittin, MCD peptide, Apamin, Adolapin etc. 4. Melittin binds to secretory phospholipase A2 and inhibits its enzymatic activity. 5. Melittin blocks neutophil O2-production. 6. MCD peptide(Peptide 401) stimulates the mast cell secrets histamine, Anti-inflammatory effect caused by this is 'conterirritation'. 7. Melittin & Apamin have an anti-inflammatory effect by inducing cortisone secretion. 8. MCD peptide & Apamin increase immunologic fuction by stimulating hypophysis & adrenal cortex and have an anti-inflammatory effect by inhibiting synthesis of prostaglandin from arachidonic acid. 9. Adolapin have an anti-inflammatory effect by inhibiting COX. 10. Bee Venom have an anti-inflammatory effect by suppressing AGP($\alpha$-acid glycoprotein). 11. Bee Venom have an anti-inflammatory effect by inhibiting NO, iNOS, PLA2, COX-2, TNF-$\alpha$, IL-1, NF-${\kappa}B$, MAP kinase.

  • PDF

Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포에 대한 참치심장 물 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Cho, Young-Je;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.326-331
    • /
    • 2015
  • The anti-inflammatory effect of tuna heart water extract (THWE) was investigated using lipopolysaccharide-induced inflammatory response in this study. Anti-inflammatory effect was detected by the cell proliferation and the production levels of nitric oxide, pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-$1{\beta}$, and tumor necrosis factor-alpha. As a result, there were no cytotoxic effects on proliferation of macrophages treated with THWE compared to the control. The production of pro-inflammatory cytokines was remarkably suppressed compared with that of the LPS only group. These results suggest that THWE exerts the anti-inflammatory property by inhibiting production of inflammatory factors and may be a potential material for anti-inflammatory therapy.

Anti-nociceptive effect of bee venom treatment on chronic arthritic pain in rats

  • Kwon, Young-bae;Lee, Jae-dong;Lee, Hye-jung;Han, Ho-jae;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.715-723
    • /
    • 1999
  • Bee venom (BV) has been traditionally applied to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis (RA) and neuritis. While several investigators have evaluated the anti-inflammatory effect of BV treatment, the anti-nociceptive effect of BV treatment on inflammatory pain is not reported. Therefore, we decided to evaluate the analgesic effect of BV treatment using Freund's adjuvant induced chronic arthritis model. Freund's adjuvant-induced arthritis has been used as an experimental animal model for RA in humans to assess the efficacy of the anti-inflammatory/analgesic drugs. In this study, subcutaneous BV treatment (1mg/kg/day) produced significantly reductions of symptoms related to arthritic pain (i.e. mechanical hyperalgesia and thermal hyperalgesia). The anti-nociceptive effect of BV was observed from at least 12 days after BV treatment. Furthermore, BV treatment significantly suppressed adjuvant induced Fos expression in lumbar spinal cord. We also found that local injection of BV into near the inflammatory site (especially Zusanli-acupoint) showed more potent analgesic effect on arthritic pain rather than distant injection of BV from inflammatory site (arbitrary side of back). The present study demonstrates that BV treatment has anti-nociceptive effect on arthritis induced inflammatory pain. The analgesic effect of BV on RA is probably mediated by the effect of BV itself or possible other mechanism such as counter-irritation. Furthermore, it is possible that BV acupuncture is one of the promising candidates for long-term therapy of RA.

  • PDF

Anti-Inflammatory Effect of Bower Actinidia in LPS-Stimulated RAW264.7 Cells (LPS로 유도된 RAW264.7 염증모델에서 미후등의 항염증효과)

  • Kim, Young-Jun;Song, Choon-Ho
    • Korean Journal of Acupuncture
    • /
    • v.30 no.4
    • /
    • pp.243-251
    • /
    • 2013
  • Objectives : Bower Actinidia has been widely used for treatment of inflammatory diseases, such as jaundice, cystolithiasis. However, the mechanism of its anti-inflammatory activity has not been clarified. In this study, we investigated the inhibitory effect of Bower Actinidia pharmacopuncture extract(BA) on LPS-induced inflammation. Methods : The effect of BA was analyzed by ELISA, RT-PCR and Western blotting in LPS-stimulated RAW264.7 cells. Results : We found that BA suppressed not only the mRNA expression of pre-inflammatory cytokines, cyclooxygenase-2(COX-2) and inducible nitric oxide synthase(iNOS), but also the phosphorylation of ERK, JNK and p38. Conclusions : These results suggest that BA exerts an anti-inflammatory effect through the regulation of the mitogen-activated protein kinase(MAPK) pathway, thereby decreasing production of pre-inflammatory cytokines.

Erythrinae Cortex inhibits Synthesis of Inflammatory Cytokines induced by IL-1$\beta$ and TNF-$\alpha$ in Cultured Human Synovial Cells

  • Lee Ho;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1101-1111
    • /
    • 2003
  • Our study shows that EC extract has inhibitory effect on pro-inflammatory cytokines such as TNF-α, IL-1, IL-6, iNOS and COX2 in hFLSs. IL-1β, IL-6, iNOS and COX2 mRNA expression is suppressed at a low dasage (1㎍/ml) of EC extract. TNF-α was also suppressed at higher dosages (10 ㎍/ml, 100㎍/ml). EC extract also inhibited TNF-α, IL-1β and IL-6 production in pro-inflammatory cytokine stimulated-hFLSs. Expecially IL-1β(p<0.05) production are suppressed significantly. On the other hand, EC extract did not show any cytotoxicity. Thses data suggest that EC extract has anti-inflammatory effect mostly by inhibiting IL-1β production, and thus could be used to prevent or treat some inflammatory disease such as RA. It remains to be known what are the major components responsible for anti-inflammatory effect and what is the main mechanism.

Anti-inflammatory, Anti-arthritic and Analgesic Effect of the Herbal Extract Made from Bacopa monnieriis, Cassia fistula and Phyllanthus polyphyllus

  • Yoon, Won Ho;Lee, Keyong Ho
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.108-112
    • /
    • 2017
  • Anti-inflammatory, anti-arthritic and analgesic activity of each herbal extract, which is extracted from Bacopa monnieriis, Cassia fistula and Phyllanthus polyphyllus, respectively. The treatment of herbal extract exhibited anti-inflammatory effect as a dose-dependent manner, from 1.25 mg/kg to 12.5 mg/kg, in acute inflammatory models (carrageen and egg-albumin induced rat hind paw edema). It also elicited significant anti-inflammatory activity in chronic inflammatory models (cotton pellet granuloma and Freund's adjuvant induced polyarthritis in rat). In cotton pellet granuloma test, the extract exhibited the inhibitory effect of 23 and 57% at the dose of 6.25 and 12.5 mg/kg, respectively. In Freund's adjuvant induced model, the treatment of the extract of 1.25, 6.25 and 12.5 mg/kg showed the inhibitory effect of 23, 56 and 66% at 8 days, respectively. In the acetic acid-induced model, the extract significantly reduced abdominal writhing in mice when compared to the control group, reducing the mean number of writhing from $41{\pm}2$ in the control group to $17{\pm}3$ and $15{\pm}2$ at the dose of 6.25 and 12.5 mg/kg. From these experiments, the extract, which was extracted from the combination of Bacopa monnieriis, Cassia fistula and Phyllanthus polyphyllus, (w/w/w = 1/2/1) is surprisingly found a significant analgesic and anti-inflammatory activity.

Developmental toxicity and anti-inflammatory effect of the soft coral Dendronephthya gigantea collected from Jeju Island in zebrafish model

  • Lee, Seung-Hong
    • Fisheries and aquatic sciences
    • /
    • v.20 no.12
    • /
    • pp.32.1-32.7
    • /
    • 2017
  • Recent in vitro studies have demonstrated that extract of soft coral Dendronephthya gigantea (SCDE) had strong anti-inflammatory activities. However, the direct effects of SCDE on anti-inflammatory activities in vivo model remained to be determined. Therefore, the present study was designed to assess in vivo anti-inflammatory effect of SCDE using lipopolysaccharide (LPS)-stimulated zebrafish model. We also investigated whether SCDE has toxic effects in zebrafish model. The survival, heart beat rate, and developmental abnormalities were no significant change in the zebrafish embryos exposed to at a concentration below $100{\mu}g/ml$ of SCDE. However, lethal toxicity was caused after exposure to 200 and $400{\mu}g/ml$ of SCDE. Treating zebrafish model with LPS treatment significantly increased the reactive oxygen species (ROS) and nitric oxide (NO) generation. However, SCDE inhibited this LPS-stimulated ROS and NO generation in a dose-dependent manner. These results show that SCDE alleviated inflammation by inhibiting the ROS and NO generation induced by LPS treatment. In addition, SCDE has a protective effect against the cell damage induced by LPS exposure in zebrafish embryos. This outcome could explain the profound anti-inflammatory effect of SCDE both in vitro as well as in vivo, suggesting that the SCDE might be a strong anti-inflammatory agent.

The inhibition of inflammatory molecule expression on 3T3-L1 adipocytes by berberine is not mediated by leptin signaling

  • Choi, Bong-Hyuk;Kim, Yu-Hee;Ahn, In-Sook;Ha, Jung-Heun;Byun, Jae-Min;Do, Myoung-Sool
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.84-88
    • /
    • 2009
  • In our previous study, we have shown that berberine has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect is due to the down-regulation of adipogenic enzymes and transcription factors. Here we focused more on anti-inflammatory effect of berberine using real time RT-PCR and found it changes expressions of adipokines. We hypothesized that anti-adipogenicity of berberine mediates anti-inflammtory effect and explored leptin as a candidate mediator of this signaling. We studied this hypothesis by western blot analysis, but our results showed that berberine has no effect on the phosphorylations of STAT-3 and ERK which have important roles on leptin signaling. These results led us to conclude that the anti-inflammatory effect of berberine is not mediated by the inhibition of leptin signal transduction. Moreover, we have found that berberine down-regulates NF-${\kappa}B$ signaling, one of the inflammation-related signaling pathway, through western blot analysis. Taken together, the anti-inflammatory effect of berberine is not mediated by leptin, and berberine induces anti-inflammatory effect independent of leptin signaling.

The Study of Literature Review on Mechanism of Bee Venom Therapy for Musculo-skeletal Disorder (봉독요법(蜂毒療法)의 근골격계질환(筋骨格界疾患) 치료기전(治療機轉)에 대한 문헌적(文獻的) 고찰(考察))

  • Kim, Sung-Soo;Chung, Won-Suk
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.3 no.1
    • /
    • pp.111-123
    • /
    • 2002
  • Objectives : There have been many studies of the effect of Bee Venom therapy about arthritis, but no one study was reported about its whole functional mechanism to musculo-skeletal system. This study was designed to investigate the effect, Indication, and side effect of Bee Venom therapy on musculo-skeletal disease by literature review of articles. Results : The effects of Bee Venom therapy to musculo-skeletal system are divided to Anti_inflammatory effect and Anti-nociceptive effect. Anti_inflammatory effect is achieved through competitive chemotaxis, immuno-regulation, increasing of cortisol secretion by stimulating hypothalamus-pituitary gland-adrenal cortex axis. Anti-nociceptive effect is achieved by Anti-inflammatory mechanism and it works similar to anti-nociceptive effect of the acupuncture acting on central and peripheral nociceptive transduction system. The Bee Venom therapy could cause severe side effect, for example, hypersensitivity and anaphylaxis, injury to central nerve system and cardiovascular system, peripheral blood system, and renal dysfunction. Conclusions : With its Anti-inflammatory and Anti-nociceptive mechanism, Bee Venom therapy is considered that has good effects to autoimmune disease, chronic inflammation of various musculo-skeletal disease and various pain syndrome. But the clinician must be careful for its side effects.

  • PDF