• Title, Summary, Keyword: Infrared radiation

Search Result 446, Processing Time 0.044 seconds

Thermo Physiological responses of Far Infrared Ray Radiation Fabrics at outdoor in summer (옥외에서 원적외선 방사직물 착용시 온열생리반응)

  • 송명견;안필자;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 1996
  • This study was performed to define the effects of Far Infrared Ray Radiation Fabrics as summer garments during outdoor work by human trial. One healthy male subject was volunteered for this study. Experimental garments consisted of three kinds of trousers (Cotton, Cotton/linen blended, Far Infrared Ray Radiation Fabric/wool blended) and basic garments (panty, socks, shirts, and dress shirts). The measurements were rectal temp., skin temp., microclimate inside clothing, heart rate, subjective sensation etc. The results were as follows : 1. Rectal temperature showed the lowest in Far Infrared Ray Radiation Fabrics among 3 garments. 2. Skin temperature (forehead, chest abdomen temp.) and mean skin temperature were lower in Far Infrared Ray Radiation Fabrics than in others, especially during early stage of work. 3. Heart rate showed lower value in Far Infrared Ray Radiation Fabrics than in others but there was no significance among the garments. 4. Humidity inside clothing and total weight loss showed the highest value in Far Infrared Ray Radiation Fabrics.

  • PDF

The evaluation of usefulness for far-infrared radiating under inner-wear on dysmenorrhea (월경통(月經痛)에 대한 원적외선 방사 기능성 under inner-wear의 유용성 평가)

  • Cho, Jung-Hoon;Lee, Kyung-Sub;Yoon, Young-Jin
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.3
    • /
    • pp.129-136
    • /
    • 2007
  • Purpose: We intended to observe the usefulness of far-infrared radiation functional under inner-wear for dysmenorrhea. Methods: We introduced far-infrared radiation functional under inner-wear to women in childbearing-age by internet portal site. Then, we preliminarily examined dysmenorrhea severity by VAS(visual analogue scale) questionnaire to women interested in far-infrared radiation functional under inner-wear. We selected women scored 5 and above of 10 measurement VAS score. Finally, 121 women were the subject of study and used far-infrared radiation functional under inner-wear for one menstrual cycle. Before and after use of far-infrared radiation functional under inner-wear, we conducted a questionnaire survey of dysmenorrhea severity by VAS. After that, we compared VAS score before and after use. Also, we studied correlation between frequency of far-infrared radiation functional under inner-wear use and ${\Delta}VAS$(VAS score before use minus VAS score after use). For statistics, we used Paired samples test and Spearman's rho correlations, SPSS 13.0 for windows. Results: Before and after use of far-infrared radiation functional under inner-wear, VAS score means were different. Frequency of far-infrared radiation functional under inner-wear use was correlated to ${\Delta}VAS$. Statistically they showed significant result (p<0.05>. Conclusion: The results showed that dysmenorrhea severity by VAS decreased after far-infrared radiation functional under inner-wear use. As frequency of use increased, ${\Delta}VAS$ increased. So we can consider far-infrared radiation functional under inner-wear effects dysmenorrhea severity.

  • PDF

The Effects of Far-Infrared on Rheumatoid Arthritis Induced Rats (원적외선 전신조사가 류마티스 관절염 유발 흰쥐에 미치는 영향)

  • Kim Gye Yeop;Cho Kyoung Oh;Kim Myung Hee;Cheong Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1301-1308
    • /
    • 2004
  • The purpose of this study was to observe the effects of far-infrared on rheumatoid arthritis induced rats by type ⅡI collagen with the change of arthritis index, hind paw volume, TNF-α and histopathologic findings. Thirty-six Sprauge-Dawley rats which were divided into four group. Group Ⅰ : Normal group, Group Ⅱ : Collagen-Induced Arthritis group, Group Ⅲ : Far-Infrared 25㎝ radiation group, Group Ⅳ : Far-Infrared 35㎝ radiation group. The results of this study were as follows: In arthritis index, far-infrared radiation group(Ⅲ, Ⅳ) are more decreased than collagen-induced arthritis group(Ⅱ). Group Ⅲ and Ⅳ showed the most significant effect at 14 day(p<0.05). In hind paw, far-infrared 25㎝ radiation group(Ⅲ) significantly decreased more than only collagen-induced arthritis group on day 14(p<0.05). Far-infrared 35㎝ radiation group(Ⅳ) significantly decreased more than collagen-induced arthritis group on day 3, 7 and 14(p<0.05). In the ELISA study of TNF-α concentration, collagen-induced arthritis group significantly increased in the concentration more than normal group. Far-infrared radiation group(Ⅲ, Ⅳ) decreased in TNF-α concentration more than collagen-induced arthritis group(Ⅱ) on day 14. In histopathologic findings, collagen-induced arthritis(Ⅱ) and far-infrared 25㎝ radiation group(Ⅲ) increased in synovial membrane thickness on 3 day. Far-infrared 35 em radiation group(Ⅳ) decreased in the concentration more than collagen-induced arthritis group on day 14. The above results suggest that far-infrared radiation effectively reduced in rheumatoid arthritis. It would be considered that far-infrared has an effects on relieving rheumatoid arthritis.

Infrared Radiation Properties for SiO2 Films Made by Sol-Gel Process (졸-겔법으로 제조된 SiO2막의 적외선 복사특성에 관한 연구)

  • Kang, Byung-chul;Kim, Young-geun;Kim, Ki-ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.697-702
    • /
    • 2003
  • FT-IR and thermograph were used to investigate the infrared radiation characteristics of $SiO_2$film made by the sol-gel method. FT-IR spectrum of the $SiO_2$film showed high infrared absorption by Si-O-Si vibration at 1220, 1080, 800 and cm$460^{-1}$ The infrared absorption and radiation wavelength ranges of the $SiO_2$film measured by the integration method coincided with the reflection method, and the infrared emissivity was 0.65, equally. Depending on the bonding of elements, the infrared emissivity was high in the wavelength range where the infrared absorption rate was high, that follows the Kirchhoff's law. The emissivity showed the highest value in the wavelength range between $8∼10\mu\textrm{m}$. $SiO_2$film was considered as an efficient materials for infrared radiator at temperature below 10$0^{\circ}C$. The heat radiation temperature was $117^{\circ}C$ for the aluminum plate, but $146^{\circ}C$ for the $SiO_2$film after 7 minutes heat absorption, consiquently, $29^{\circ}C$ higher than the former.

Optimization of sintering process of the far-infrared radiation ceramic (원적외선 방사 세라믹의 소결공정 최적화)

  • Park, Jae Hwa;Kim, Hyun Mi;Kang, Hyo Sang;Choi, Jae Sang;Choi, Bong Geun;Nam, Ki Woong;Nam, Han Woo;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2016
  • Far-infrared radiation ceramic is an attractive material that provides thermal therapy by permeating the infrared rays into the deep inside of the human skin. Therefore, it is currently used for thermal therapy devices, thermal mat, heating equipment and so on. This work aims to optimize the sintering process of the far-infrared radiation ceramic with the process parameters of temperature and time. A variety of characterization tools have been used to investigate the optimal sintering condition of far-infrared radiation. The phase of far-infrared radiation ceramic was characterized by using X-ray diffraction (XRD) and microstructure of fracture surface was studied by scanning electron microscopy (SEM). The FT-IR was also performed to measure the far-infrared emissivity.

A Change in the Temperature and Infrared Radiation as a Variation of Irradiance (복사조도의 번동에 따른 온도 및 적외선복사량의 변화)

  • Han, Jong-Sung;Kim, Gi-Hoon;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2005
  • Thermal reactions by infrared radiation brings about physical damage by temperature rise process or temperature drop process of the material. In this study, a measuring system was set up to measure the temperature rise of each sample by infrared radiation from light source. And the temperature rise of the samples and amount of infrared radiation by various light source were measured with varying irradiance. On the basis of the result from the test, we analyzed a functional relation between infrared and infrared radiation.

Measurements of Temperature Rise and Temperature Distribution of Samples by Infrared Radiation (적외선 복사에 의한 시료의 온도상승과 온도분포 측정)

  • Han, Jong-Sung;Kim, Ki-Hoon;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • /
    • pp.133-137
    • /
    • 2003
  • When a light is projected upon a material, part of its radiation energy is absorbed and the rest is reflected or transmitted according to the nature of the material. The molecules of the substance absorbing a light obtains the radiation energy to the wavelength of the light to make photochemical degradation by ultraviolet ray or thermal reactions like physical damage by infrared ray. The degree of damage by radiation energy varies to the substances of materials, the spectral power distribution of the light source and the duration of irradiation. Because the damage brings about a devaluation of material and once damaged, it is irretrievable, it is necessary to minimize the damage and conserve the native quality of a material by a protective lighting system. A measuring system was set up to measure the temperature rise of each sample by infrared radiation from light sources. And the temperature rise and temperature distribution by various infrared lamps were measured with varying time.

  • PDF

An Experimental Study on the Thermal Load of a Cryochamber with Radiation Shields (복사 차폐막이 설치된 극저온 용기의 열부하 특성에 관한 실험적 연구)

  • Kim, Young-Min;Kang, Byung-Ha;Park, Seong-Je
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Infrared (IR) detectors are widely used for such applications as thermoelastic stress analysis, medical diagnostics and temperature measurement. Infrared detectors commonly need to be refrigerated below 80 K, and thus a cooling system should be equipped together with the detector system. The cooling load, which should be removed by the cooling system to maintain the nominal operating temperature of the detector, critically depends on the insulation efficiency of the cryochamber housing the detector. Thermal load of a cryochamber is attributed to the conduction heat transfer through a cold finger, the gases conduction and radiation heat transfer. The thermal loads of an infrared detector cryochamber with a radiation shield are investigated experimentally in present study. Since the effect of radiation heat transfer on thermal loads is significant, radiation shields is installed in the cold finger part to protect heat input through radiation.

Drying Characteristics by Infrared Heating of agricultural products (원적외선 가열에 의한 농산물의 건조특성)

  • Sang, Hie-Sun;Bae, Nae-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • Infrared heating has been traditionally used in industrial applications for processes such as dehydration of food industrial. This heating method involves the application of radiation in the wavelength range of 2 to 50 micrometers. In this work, simultaneous heat balance equations were developed to simulate the infrared radiation heating of agricultural products. The equations assume that moisture diffuses to the outer boundaries of the material in liquid form and evaporation occurs at the surface of the agricultural products. Energy for moisture evaporation is supplied by the infrared radiant energy. The optimum temperature and drying time for the best drying conditions of changing the red peppers with the moisture content of 18% and the restore rate of 80~85% are $80^{\circ}C$ and 44 hours. The performance of radiation tubes coating with the radiation paint developed in this research has the energy of $2.27{\times}103W/m^2{\mu}m$, $150^{\circ}C$ within the scope of radiation wave length of $2{\sim}30{\mu}m$ and has the radiation 0.92~0.93, which is superior to the general radiation tubes. The extinction coefficient according to the band pass filter using the 4 flux theory ha higher dependability on wave length, accounting for $2{\sim}17{\mu}m$ and $5{\times}105{\sim}106m-1$. A comparison between the theoretical energy transfer whose figures are interpreted according to 4 flux theory and the experimental energy transfer of far infrared dryer leads to the findings of the agreement less than 5%.

  • PDF

A Study on Prediction of Surface Temperature and Reduction of Infrared Emission from a Naval Ship by Considering Emissivity of Funnel in the Mid-Latitude Meterological Conditions (중위도 기상조건에서 함정의 연돌 방사율을 고려한 적외선 복사량 예측 및 감소방안 연구)

  • Gil, Tae-Jun;Choi, Jun-Hyuk;Cho, Yong-Jin;Kim, Tae-Kuk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.1
    • /
    • pp.40-47
    • /
    • 2007
  • This study is focused on developing a software that predicts the temperature distribution and infrared Emission from 30 objects considering the solar radiation through the atmosphere. The solar radiation through the atmosphere is modeled by using the well-known LOWTRAN7 code. Surface temperature information is essential for generating the infrared scene of the object. Predictions of the transient surface temperature and the infrared emission from a naval ship by using the software developed here show fairly good results by representing the typical temperature and emitted radiance distributions expected for the naval ship considered in mid latitude. Emissivity of each material is appeared to be an important parameter for recognizing the target in Infrared band region. The numerical results also show that the low emissivity surface on the heat source can be helpful in reducing the IR image contrast as compared to the background sea.