• Title, Summary, Keyword: Inlet Part

Search Result 245, Processing Time 0.046 seconds

Analysis of Fluid Structure Interaction on 100kW-HAWT-blade (100kW용 풍력발전기의 블레이드에 대한 유동/구조 연성해석)

  • Kim Yun-Gi;Kim Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

Analysis of Wind Turbine system using Fluid Structure Diteraction (유동-구조 연성해석 기법을 이용한 풍력발전시스템 해석)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

A COMPUTATIONAL APPROACH TO DESIGN THE GEOMETRY OF THE AIR-TWIST NOZZLE (Air-twist 노즐 형상 설계의수치적 연구)

  • Juraeva, M.;Song, D.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • /
    • pp.67-70
    • /
    • 2010
  • Spandex yarn requires a twisting process during winding and unwinding processes at the textile industry. The air-twist nozzle is widely used as part of the winding and unwinding. This paper describes computational approach to design the geometry of the air-twist nozzle. The nozzle has circular yarn-channel and the air-inlet which is perpendicularly connected to the yarn-channel with yarn-loading slit. The air-inlet of the nozzle is designed while measurements of the yarn-channel are fixed. The airflow inside the air-twist nozzle is simulated by using Computational Fluid Dynamic model. The Ansys CFX was used to perform steady simulations of the airflow for the air-twisting process. The vortical structure and the airflow pattern such as velocity streamline, vorticity, velocity of the air-twist nozzle are discussed. Computational results are compared with experimental results in this paper.

  • PDF

Cavitation in Pump Inducer with Axi-asymmetrical Inlet Plate Observed by Multi-cameras

  • Kim, Jun-Ho;Atono, Takashi;Ishizaka, Koichi;Watanabe, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • The attachment of inducer in front of main impeller is a powerful method to improve cavitation performance; however, cavitation surge oscillation with low frequency occurs with blade cavity growing to each throat section of blade passage simultaneously. Then, one conceptual method of installing suction axi-asymmetrical plate has been proposed so as to keep every throat passage away from being unstable at once, and the effect on suppression of the oscillation were investigated. In the present study, cavitation behaviors in the inducer is observed with distributing multi-cameras circumferentially, recording simultaneously and reconstructing multi-photos on one plane field as moving a linear cascade. Observed results are utilized for discussion with other measuring results as casing wall pressure distribution. Then the suppression mechanism of oscillation by installing axi-asymmetrical inlet plate will be clarified in more details.

FSI analysis on wind turbine blade (풍력발전기의 블레이드에 대한 FSI 해석)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.2829-2832
    • /
    • 2007
  • In this study, one-way fluid structure interaction analysis(FSI) on wind turbine blade was performed. Both a quantitative fluid analysis on 3-bladed wind turbine and a structural analysis using the surface pressure data resulting from fluid analysis were carried out. Streamlines and angle of attack was easily acquired from analysis results, we showed the inlet velocity that the stall begins to occur. In the structural analysis, structural displacement and maximum stress of the two comparative models was calculated. The location that has maximum stress was found. The pressure difference between back and front part of the blade increases as the inlet velocity increase. The torque and maximum with regard to inlet velocity was also presented.

  • PDF

A Study on the Smoke Movement by the Opening and Heat Generator Position (개구부와 열원의 위치에 따른 연기이동에 관한 연구)

  • 조성우;이재윤
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • The diffusion characteristics of the smoke by effect of an ascending air movement in a local part of the room where heat generated was studied. How the smoke move in the limited parts of the room at which heat generated was studied through 3 cases altering locations of inlet and outlet of ventilated air and heat generated by CFD(Computational Fluids Dynamics) method. It was found that 1. Similar distribution of air velocity, air temperature and smoke concentration appeared in the case of upper left inlet and lower right outlet and the case of lower inlet and upper right outlet. 2. Distribution of temperature and smoke concentration was 0∼0.3, 0.06∼0.14 in the case of lower left inlet and upper right outlet. 3. the location of heat generation did not influence on the temperature distribution, but influence on the distribution of smoke concentration.

The Performance Evaluation of a Gas Turbine Combustor (가스터빈 연소기의 성능평가)

  • Ahn, Kook-Young;Kim, Han-Seok;Ahn, Jin-Hyuk;Pae, Hyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1294-1299
    • /
    • 2000
  • The combustion characteristics have been investigated to develop the 50 kW-class gas turbine combustor. The combustor design program was developed and applied to design this combustor. The combustion air which has the temperature of 45, 200, $300^{\circ}C$ were supplied to combustor for elucidating the effect of inlet air temperature on CO, NOx emissions and flame temperature. The exit temperature and NO were increased and CO was decreased with increasing inlet air temperature. Also, the effect of equivalence ratio was considered to verify the combustor performance. The emissions of CO and NO with inlet air temperature can be analyzed qualitatively by measuring the temperature inside the combustor. The combustion performance with fuel schedule was evaluated to get the informations of the starting and part loading process of gas turbine. The combustion was stable above the equivalence ratio of 0.18. The pattern factor which is the important parameter of combustor performance was satisfied with the design criterion. Consequently the combustor was proved to meet the performance goal required for the target gas turbine system.

SUPERSONIC INLET BUZZ CONTROL USING CORRECTED BLEED MODEL (보정한 Bleed 모델을 이용한 초음속 흡입구 버즈 제어)

  • Kwak, E.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.82-89
    • /
    • 2013
  • Database of a bleed model has been corrected and numerical simulations have been performed to control buzz using the corrected bleed model. The existing bleed model, which was developed as a part of a boundary condition model for porous bleed walls, underestimates bleed flow rate because flow accelerations near the bleed regions are ignored. Also, it overpredicts the sonic flow coefficient when the bleed plenum pressure ratio is high. To correct these problems, and to enhance the performance of the bleed model, the database has been corrected using CFD simulations to compensate for the flow acceleration near the bleed region. Futhermore, the database of the bleed model is extended with the second order extrapolation. The corrected bleed model is validated with numerical simulations of a shock-boundary layer interaction problem over a solid wall with a bleed region. Using the corrected bleed model, numerical simulations of supersonic inlet buzz are performed to find the deterrent effects of bleed on buzz. The results reveal that bleed is effective to prevent buzz and to enhance the inlet performance.

Investigation of Icing Phenomenon in Liquid Phase LPG Injection System (액상분사식 LPG 연료공급방식의 아이싱현상에 관한 연구)

  • Kim, C.U.;Oh, S.M.;Kang, K.Y.
    • Journal of ILASS-Korea
    • /
    • v.8 no.1
    • /
    • pp.9-15
    • /
    • 2003
  • The liquid phase LPG injection (LPLI) system is considered as one of the next generation fuel supply systems for LPG, vehicles, since it can accomplish the higher power, higher efficiency, and lower emission characteristics than the existing mixer type fuel supply system. However, during the injection of liquid LPG fuel into the inlet duct of an engine, a large quantity of heat is extracted due to evaporation of fuel. A problem is that the moisture in the air freezes around the outlet of a nozzle, which is called icing Phenomenon. It may cause damage to the outlet nozzle of an injector. The frozen ice deposit detached from the nozzle also may cause a considerable damage to the inlet valve or valve seat. In this work, the experimental investigation of the icing phenomenon was carried out. The results showed that the icing phenomenon and process were mainly affected by humidity of inlet air instead of the air temperature in the inlet duct. Also, it was observed that the icing occurs first in the inlet of a nozzle, and grows considerably at the upper part of the nozzle inlet and the opposite side of the nozzle entrance. An LPG fuel, mainly consisting of butane, has lower latent heat of vaporization than that of propane, which is an advantage in controlling the icing phenomenon.

  • PDF

Performance Characteristics of a Variable Displacement Engine at Part-Load and Idle (부분부하와 무부하에서의 가변 배기량기관의 성능특성)

  • 한성빈;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.232-239
    • /
    • 1994
  • This paper presents an effective way of improving fuel consumption for a variable displacement engine. The improvement of fuel consumption can be accomplished by means of deactivating inlet and exhaust valves, reducing the number of effective cylinders of a four-cylinder gasoline engine that is mounted on a domestic compact automobile.