• Title, Summary, Keyword: Inquiry thinking skill

Search Result 28, Processing Time 0.038 seconds

The Development of Teaching Strategy for the Enhancement of the Creative Problem Solving Thinking Skills through General Chemistry Laboratory and the Effects of It's Applications(I) (창의적 문제 해결력 지향 일반화학실험 교수 전략 개발 및 적용 효과(제I보))

  • Bang, Dam-I;Park, Ji-Eun;Song, Ju-Yeon;Kang, Soon-Hee
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.290-303
    • /
    • 2011
  • The purpose of this study was to introduce the practical model on the enhancement of the divergent and convergent thinking skills through inquiry instruction in science class. In this study, the creative thinking skill has been defined by divergent thinking skill as the narrow sense. In the science field, the problem solving thinking skill is just same as the inquiry thinking skill. Also, the problem solving thinking skill has been defined by convergent thinking skill as the critical thinking skill. This new instruction had been used for the college student in the class of general chemistry laboratory for the one semester. The first results had been founded that the students' divergent thinking skill had been increased significantly. Especially, the skills of recognition of problems, the skills of making hypothesis, and the skills of transformation and interpretation of data had been increased significantly. The second results had been founded that the students' convergent thinking skill had been increased significantly. Especially, the skills of making hypothesis, the skills of transformation and interpretation of data, and the skills of making conclusion and generalization had been increased significantly. The third results had been founded that the students' the creative and problem solving thinking skill had been increased significantly. Especially, the rest of all skills exception the skill of control variables had been increased significantly.

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

An approach to development of scientific thinking skills through science inquiry play of analogy (과학적 사고력의 신장을 위한 과학비유탐구놀이 학습방법의 구안)

  • 현동걸
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.61-73
    • /
    • 1998
  • This research suggests science inquiry play of analogy as a teaming method to help the students in concrete operational stage to develop scientific thinking skills and to understand abstract science conceptions. The research focuses on/considers the characteristics and merits of the science inquiry plays, and the learning method by analogical reasoning. This learning through the science inquiry play of analogy can be considered as a meta-model for scientific thinking skill. The learning has the following processes: 1) Students analogize the abstract science conceptions and facts into play-type activities including the concrete contents such as students themselves, their physical-sensory motions, concrete objects, play methods, and play rules. 2) Students as analogized objects play a role physically and sensuously according to the methods and rules analogized in the play. 3) Students find out the concrete contents included in the science inquiry play of analogy, draw the results, and deduce the new conceptions from the results by reflective thinking and analogical reasoning.

  • PDF

Construction of a Structural Equation Model on Attitudes to Science Using LISREL (LISREL을 이용한 과학에서의 태도에 관한 구조방정식모델의 구축)

  • Lee, Kyung-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.301-311
    • /
    • 1997
  • The purpose of this study is to construct a structural equation model and to analyze causal relationships among variables related to attitudes to science using structural equation modeling(SEM) with LISREL VII. The sample consisted of 483 10th grade boys from a general high school in Pusan, Korea. The questionnaires (ABC-attitude scale: affection, behavioral intention, cognition scale of attitude towards science) were developed by the researcher through a pilot study. And other instruments have modified previous ones. Five instruments were used in this study: GALT(group assessment of logical thinking), MTSlS(modified test of science inquiry skill), ABC-attitude scale, MSAS(modified scientific attitude scale), CSAT(common science achievement test). Structural equation modeling with LISREL VII($J\ddot{o}reskog$ & $S\ddot{o}rbom,$ 1993) was employed to estimate the causal inferences about hypothesized relationships among observed data sets. Three competing models consisted of five latent variable(scientific thinking ability, science inquiry skill, attitude towards science, scientific attitude, science achievement) - lP(inquiry preceding) model, AP(attitude preceding) model and AM(attitude mediating) model - were developed. Among these competing models, IP model satisfied the observed data sets. The causal relationships among "attitudes to science" and other latent variables were reliably identified. According to the results of the present study, science inquiry skill was the most significant variable that can predict science achievement. But scientific thinking ability has not directly influenced science achievement. This study suggests that inquiry based teaching-learning processes should be offered to students for improvement of science achievement. At the same time, it seems to be important to develop positive attitude towards science. Understanding of relationships among variables related to attitudes to science will be helpful to the development of science curriculum and to the design of science teaching and learning process. LISREL has been recognized as a useful approach in testing a SEM. However, in this study, LISREL approach was estimated as much more useful method for research design.

  • PDF

The Development of a Model for the Enhancement of Creative and Critical Thinking Skills through Hypotheses generating Activities and It's Applications on Teaching Science (가설 제안 활동을 통한 창의적 사고력과 비판적 사고력 신장에 기여하는 모델 개발 및 과학 교수에서 그 활용)

  • Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.482-494
    • /
    • 2008
  • The purpose of this study was to introduce a practical model to enhance creative and critical thinking skills through hypotheses generating activities for students. The 2007 Science National Curricula stresses the need for the enhancement of creative thinking skills for our students. The definition for the creativity in the narrow sense is the divergent thinking skills. The definition of the critical thinking skills is the strong sense of those skills. This model shows the use of the divergent thinking skills and convergent thinking skills together. The divergent thinking skills has been developed by making three alternative explanations about the causal question within a group of students by active discussion. The following procedure includes the selection of the most provable of the three explanations within a group of students also by active discussions. This process needs convergent thinking skills as well as critical thinking skills. This model can be used easily by exchanging from the one explanation about the causal question in any inquiry teaching strategy to three explanations about one. Although the partial modified strategy shows a small difference from any inquiry teaching strategy, but the effect of the enhancement of the creative thinking skills for our students shows significantly better (p<.05). More detailed study will be carried out in the near future.

Inquiry Problem Solving Characteristics among Categories with Science Process Skills and Concepts by High School Student's Protocol Analysis (고등학생의 프로토콜 분석을 통한 과학 탐구능력과 개념 중심의 탐구능력 대범주별 과학 문제 해결 특성)

  • Lee, Hang-Ro
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.3
    • /
    • pp.355-366
    • /
    • 1999
  • In this study, the characteristics of science inquiry problem solving were analyzed in the interactions between science process skills and science concepts by each related its category. Nine types of problem solving, which were based on two elements and the thinking aloud were found largely by protocol analysis, but six types when integrated similar thinking processes. There were quite differences in the representative types between students who succeeded and failed when science inquiry items were solved in the abilities of recognizing problems and generating hypotheses or those of drawing conclusions and evaluating. But there were not complete differences in those types between students who succeeded and failed when they were solved in the abilities of designing and performing experiments or those of interpreting and analyzing data. The data were divided into independent variables: $D_1,\;D_2,\;D_3,\;D_4,\;D$ and $C_1,\;C_2,\;C_3,\;C_4,\;C$ and dependant variables; $E_1,\;E_2,\;E_3,\;E_4,\;E$. The former consisted of the content-free science process skill achievement levels by each category of science inquiry skill and the science concept achievement levels, the latter the science inquiry problem achievement levels by each category of science inquiry skill. The regression equations were acquired within the 0.05 significant level by regression analysis: $E_1=0.03+0.16D_1+0.29C_1,\;E_2=-0.203+0.21D_2+0.45C_2,\;E_3=-0.32+0.13D_3+0.47C_3,\;E_4=0.61+0.09D_4+0.29C_4,\;E=-1.41+0.13D+0.47C$(E : the achievement of science problems, D : the achievement of science process skills, C : the achievement of science concepts).

  • PDF

Analysis of Awareness of Teachers for Core Competencies and Scientific Core Competencies (핵심역량과 과학과 교과역량에 대한 초등 교사의 인식 분석)

  • Ha, Ji-hoon;Shin, Youngjoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.426-441
    • /
    • 2016
  • The purpose of this study was getting the information for successful application to the national curriculum and students' core competencies enhancement, through investigation about competencies discussed in 2015 revised national curriculum development process and analysis about perception of 150 elementary school teachers in study. The results were as follows : Communication skill is considered to be the most important. Thinking ability what has been important traditionally is the middle of the rankings. Elementary school teachers think that a competency is specific to a subject. From this point of view, Creative/Scientific Problem-Solving Ability is the most important in science. They think that the enhancing of the ability of inquiry performance is highlighted in current science class. On elementary school teachers' awareness, inquiry model is the most effective in enhancing of scientific thinking and the ability of inquiry performance. And STS instruction model is in the other. PBL learning model and experimental inquiry model is the most effective in enhancing a competency has the highest feasibility like scientific thinking or the ability of inquiry performance.

The Enhancement of Creative Thinking Skill through the Writing Activity about the Basic Inquiry and the Integrated Inquiry Elements (탐구 요소 별 글쓰기와 통합적 문제 해결 글쓰기 활동을 통한 창의적 사고력 신장 방안)

  • Park, Hyejin;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.845-854
    • /
    • 2013
  • The purpose of this study was to develop a teaching strategy focused on science writing and to investigate its effects on enhancing students' creative thinking skills. In advance, students in the experiment were led to write by inquiry elements. And students in the experiment group were taught by science writing strategy. Students in the control group were taught by traditional lecture-based instructions. The program was implemented over a semester. The results indicated that the experimental group presented statistically meaningful improvement in creative thinking skills(p<.05). Especially, science writing was effective on fluency and flexibility development(p<.05). This study suggests that science writing can be effective for improvement of creative thinking skills.

A Study on Application of Reflective Thinking-Based Laboratory Report in General Physics Experiment (일반물리실험에서 반성적 사고를 강조한 실험보고서 적용 가능성 탐색)

  • Lee, Yoon-Hee;Choi, Hyukjoon
    • Journal of Science Education
    • /
    • v.40 no.3
    • /
    • pp.203-218
    • /
    • 2016
  • The purpose of this study was to investigate the effects of reflective thinking-based laboratory report on learners' metacognition and inquiry skills. In a general physics experiment class consisting of 11 experiments, 20 college students used reflective thinking-based laboratory report, and then the changes of their metacognition and inquiry skills were compared with those of who used general laboratory report. The opinions of students used reflective thinking-based laboratory report were surveyed. The results showed that their metacognitions were increased more than those of comparison group that used common experiment report. Their inquiry skills also were increased as much as comparison group's. According to the survey results, they recognized that reflective thinking-based laboratory report helps to improve their performance, metacognitions, and inquiry skills.

The Effect of Inquiry Teaching Strategy Enhancing the Logical Thinking Skill through the Science Teaching about the 1st Year Students of the Junior High School (과학 수업에서 논리적 사고력 강화 탐구 교수 전략이 중학교 1학년 학생들의 논리적 사고력에 미치는 효과)

  • Hong, Hyein;Kang, Soonhee
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.667-680
    • /
    • 2014
  • The purpose of this study was to develop teaching stratege focused on Conservational reasoning, Proportional reasoning, Variable-controlling reasoning, Probabilitic reasoning, Correlational reasoning, Combinational reasoning and investigate its effects on enhancing students' logical thinking skills through the science teaching on common education. And the teaching materials was implemented to 110 students in middle school over about six months. The results indicated that the experimental group presented statistically meaningful improvement in logical thinking skills (p<05). Especially, this teaching stratege was effective on Conservational reasoning, Variable-controlling reasoning, Combinational reasoning but was not effective on Proportional reasoning, Probabilitic reasoning, Correlational reasoning (p<.05). Logical thinking according to the teaching strategy skill was not affected by gender, cognitive level, academic achievement (p<.05).