• Title, Summary, Keyword: Kissinger method

Search Result 77, Processing Time 0.078 seconds

Characteristics of Basalt Materials Derived from Recycling Steel Industry Slags (철강산업 슬래그를 이용하여 제조한 바잘트 소재의 특성)

  • Jung, Woo-Gwang;Back, Gu-Seul;Yoon, Mi-Jung;Lee, Jee-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2017
  • In this study, Fe-Ni slag, converter slag and dephosphorization slag generated from the steel industry, and fly ash or bottom ash from a power plant, were mixed at an appropriate mixing ratio and melted in a melting furnace in a mass-production process for glass ceramics. Then, glass-ceramic products, having a basalt composition with $SiO_2$, $Al_2O_3$, CaO, MgO, and $Fe_2O_3$ components, were fabricated through casting and heat treatment process. Comparison was made of the samples before and after the modification of the process conditions. Glass-ceramic samples before and after the process modification were similar in chemical composition, but $Al_2O_3$ and $Na_2O$ contents were slightly higher in the samples before the modification. Before and after the process modification, it was confirmed that the sample had a melting temperature below $1250^{\circ}C$, and that pyroxene and diopside are the primary phases of the product. The crystallization temperature in the sample after modification was found to be higher than that in the sample before modification. The activation energy for crystallization was evaluated and found to be 467 kJ/mol for the sample before the process modification, and 337 kJ/mol for the sample after the process modification. The degree of crystallinity was evaluated and found to be 82 % before the process change and 87 % after the process change. Mechanical properties such as compressive strength and bending strength were evaluated and found to be excellent for the sample after process modification. In conclusion, the samples after the process modification were evaluated and found to have superior characteristics compared to those before the modification.

Crystallization Behavior and Kinetics of Cu-Zr-Al-Be Bulk Metallic Glass (Cu-Zr-Al-Be 비정질합금의 결정화거동 및 속도론)

  • Kim, Yu-Chan;Fleury, Eric;Seok, Hyun-Kwang;Cha, Pil-Ryung;Lee, Jin-Kyu;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.6
    • /
    • pp.338-344
    • /
    • 2008
  • The crystallization kinetics of the $Cu_{43}Zr_{43}Al_7Be_7$ bulk metallic glass were studied by differential scanning calorimetry(DSC) in the continuous heating and isothermal annealing modes. Only one major peak could be detected on the DSC traces of $Cu_{43}Zr_{43}Al_7Be_7$ bulk amorphous alloy, and the activation energy for crystallization corresponding to the peak determined by the Kissinger method was resulted of 239 kJ/mol. The isothermal kinetic, analyzed by the Johnson-Mehl-Avrami equation yielded values for the Avrami exponents in the range 1.69 to 2.37, which implied a crystallization governed by a three-dimensioned growth. Primary phases were essentially the cubic structure CuZr together with the $Cu_{10}Zr_7$ phase. At higher temperature, the CuZr disappeared while the $Cu_{10}Zr_7$ became predominant. After long term annealing at 731 K, the phases were $Cu_{10}Zr_7$, $Cu_2ZrAl$ and $Al_3Zr_5$.

A Study on Reaction Rate of Solid SCR for NOx Reduction of Exhaust Emissions in Diesel Engine (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR의 반응률에 관한 연구)

  • Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.183-194
    • /
    • 2013
  • Liquid urea based SCR has been used in the market to reduce NOx in the exhaust emission of the diesel engine vehicle. This system has several problems at low temperature, which are freezing below $-12^{\circ}C$, solid deposit formation in the exhaust, and difficulties in dosing system at exhaust temperature below $200^{\circ}C$. Also, it is required complicated exhaust packaging equipment and mixer due to supply uniform ammonia concentration. In order to solve these issues, solid urea, ammonium carbonate, and ammonium carbamate are selected as ammonia sources for the application of solid SCR. In this paper, basic research on reaction rate of three ammonia-transporting materials was performed. TGA (Thermogravimetric Analysis) and DTA (Differential Thermal Analysis) tests for these materials are carried out for various heating conditions. From the results, chemical kinetic parameters such as activation energy and frequency factor are obtained from the Arrhenius plot. Additionally, from test results of DSC (Differential Scanning Calorimeter) for these materials, chemical kinetic parameters using the Kissinger method are calculated. Activation energies of solid SCR from this experiment are compared with proper data of literature study, then obtained data of this experiment are used for the design of reactor and dosing system for candidate vehicle.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

The Potential Energy Recovery and Thermal Degradation of Used Tire Using TGA (열분석법을 이용한 사용후 타이어의 열적 특성과 포텐셜 에너지의 회수)

  • Kim, Won-Il;Kim, Hyung-Jin;Hong, In-Kwon
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.135-146
    • /
    • 1999
  • The thermal degradation kinetics of SBR and tire were studied using a conventional thermogravimetric analysis in the stream nitrogen at a heating rate of 5, 10, 15, $20^{\circ}C/min$, respectively. Thermogravimetric curves and their derivatives were analyzed using various analytical methods to determine the kinetic parameters. The degradation of the SBR and tire was found to be a complex process which has multi-stages. The Friedman method gave average activation energies for the SBR and tire of 247.53kJ/mol and 230.00kJ/mol, respectively. Mean-while, the Ozawa method Eave 254.80kJ/mol and 215.76kJ/mol. It would appear that either. Friedman's differential method or Ozawa's integral method provided satisfactory mathematical approaches to determine the kinetic parameters for the degradation of the SBR and tire. Approximately 86% and 55% of oil products were obtained at a final temperature of $700^{\circ}C$ and a heating rate of $20^{\circ}C/min$ for the SBR and tire respectively.

  • PDF

Kinetic Studies of CO2 Gasification by Non-isothermal Method on Fly Ash Char (비등온법에 의한 비산재 촤의 CO2 가스화 특성)

  • Kang, Suk-Hwan;Ryu, Jae-Hong;Lee, Jin-Wook;Yun, Yongseung;Kim, Gyoo Tae;Kim, Yongjeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.493-499
    • /
    • 2013
  • For the purpose of utilizing fly ash from gasification of low rank coal, we performed the series of experiments such as pyrolysis and char-$CO_2$ gasification on fly ash by using the thermogravimetric analyzer (TGA) at non-isothermal heating conditions (10, 20 and $30^{\circ}C/min$). Pyrolysis rate has been analyzed by Kissinger method as a first order, the reliability of the model was lower because of the low content of volatile matter contained in the fly ash. The experimental results for the fly ash char-$CO_2$ gasification were analyzed by the shrinking core model, homogeneous model and random pore model and then were compared with them for the coal char-$CO_2$ gasification. The fly ash char (LG coal) with low-carbon has been successfully simulated by the homogeneous model as an activation energy of 200.8 kJ/mol. In particular, the fly ash char of KPU coal with high-carbon has been successfully described by the random pore model with the activation energy of 198.3 kJ/mol and was similar to the behavior for the $CO_2$ gasification of the coal char. As a result, the activation energy for the $CO_2$ gasification of two fly ash chars don't show a large difference, but we can confirm that the models for their $CO_2$ gasification depend on the amount of fixed carbon.

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.