• Title, Summary, Keyword: Korean machine reading comprehension

Search Result 9, Processing Time 0.034 seconds

S2-Net: Machine reading comprehension with SRU-based self-matching networks

  • Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.371-382
    • /
    • 2019
  • Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.

Korean Machine Reading Comprehension for Patent Consultation Using BERT (BERT를 이용한 한국어 특허상담 기계독해)

  • Min, Jae-Ok;Park, Jin-Woo;Jo, Yu-Jeong;Lee, Bong-Gun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • MRC (Machine reading comprehension) is the AI NLP task that predict the answer for user's query by understanding of the relevant document and which can be used in automated consult services such as chatbots. Recently, the BERT (Pre-training of Deep Bidirectional Transformers for Language Understanding) model, which shows high performance in various fields of natural language processing, have two phases. First phase is Pre-training the big data of each domain. And second phase is fine-tuning the model for solving each NLP tasks as a prediction. In this paper, we have made the Patent MRC dataset and shown that how to build the patent consultation training data for MRC task. And we propose the method to improve the performance of the MRC task using the Pre-trained Patent-BERT model by the patent consultation corpus and the language processing algorithm suitable for the machine learning of the patent counseling data. As a result of experiment, we show that the performance of the method proposed in this paper is improved to answer the patent counseling query.

S2-Net: Korean Machine Reading Comprehension with SRU-based Self-matching Network (S2-Net: SRU 기반 Self-matching Network를 이용한 한국어 기계 독해)

  • Park, Cheoneum;Lee, Changki;Hong, Sulyn;Hwang, Yigyu;Yoo, Taejoon;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.35-40
    • /
    • 2017
  • 기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.

  • PDF

Korean Machine Reading Comprehension for Patent Consultation using BERT (BERT를 이용한 한국어 특허상담 기계독해)

  • Min, Jae-Ok;Park, Jin-Woo;Jo, Yu-Jeong;Lee, Bong-Gun;Hwang, Kwang-Su;Park, So-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.767-769
    • /
    • 2019
  • 기계독해는(Machine reading comprehension) 사용자 질의에 대한 답변이 될 수 있는 내용을 기계가 문서를 이해하여 추론하는 것을 말하며 기계독해를 이용해서 챗봇과 같은 자동상담 서비스에 활용할 수 있다. 최근 자연어처리 분야에서 많은 성능 향상을 보이고 있는 BERT모델을 기계독해 분야에 적용 할 수 있다. 본 논문에서는 특허상담 분야에서 기계독해 task 성능 향상을 위해 특허상담 코퍼스를 사용하여 사전학습(Pre-training)한 BERT모델과 특허상담 기계학습에 적합한 언어처리 기법을 추가하여 성능을 올릴 수 있는 방안을 제안하였고, 본 논문에서 제안한 방법을 사용하여 특허상담 질의에 대한 답변 결정에서 성능이 향상됨을 보였다.

S2-Net: Korean Machine Reading Comprehension with SRU-based Self-matching Network (S2-Net: SRU 기반 Self-matching Network를 이용한 한국어 기계 독해)

  • Park, Cheoneum;Lee, Changki;Hong, Sulyn;Hwang, Yigyu;Yoo, Taejoon;Kim, Hyunki
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.35-40
    • /
    • 2017
  • 기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.

  • PDF

The Unsupervised Learning-based Language Modeling of Word Comprehension in Korean

  • Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.41-49
    • /
    • 2019
  • We are to build an unsupervised machine learning-based language model which can estimate the amount of information that are in need to process words consisting of subword-level morphemes and syllables. We are then to investigate whether the reading times of words reflecting their morphemic and syllabic structures are predicted by an information-theoretic measure such as surprisal. Specifically, the proposed Morfessor-based unsupervised machine learning model is first to be trained on the large dataset of sentences on Sejong Corpus and is then to be applied to estimate the information-theoretic measure on each word in the test data of Korean words. The reading times of the words in the test data are to be recruited from Korean Lexicon Project (KLP) Database. A comparison between the information-theoretic measures of the words in point and the corresponding reading times by using a linear mixed effect model reveals a reliable correlation between surprisal and reading time. We conclude that surprisal is positively related to the processing effort (i.e. reading time), confirming the surprisal hypothesis.

A Hybrid Sentence Alignment Method for Building a Korean-English Parallel Corpus (한영 병렬 코퍼스 구축을 위한 하이브리드 기반 문장 자동 정렬 방법)

  • Park, Jung-Yeul;Cha, Jeong-Won
    • MALSORI
    • /
    • v.68
    • /
    • pp.95-114
    • /
    • 2008
  • The recent growing popularity of statistical methods in machine translation requires much more large parallel corpora. A Korean-English parallel corpus, however, is not yet enoughly available, little research on this subject is being conducted. In this paper we present a hybrid method of aligning sentences for Korean-English parallel corpora. We use bilingual news wire web pages, reading comprehension materials for English learners, computer-related technical documents and help files of localized software for building a Korean-English parallel corpus. Our hybrid method combines sentence-length based and word-correspondence based methods. We show the results of experimentation and evaluate them. Alignment results from using a full translation model are very encouraging, especially when we apply alignment results to an SMT system: 0.66% for BLEU score and 9.94% for NIST score improvement compared to the previous method.

  • PDF

Korean TableQA: Structured data question answering based on span prediction style with S3-NET

  • Park, Cheoneum;Kim, Myungji;Park, Soyoon;Lim, Seungyoung;Lee, Jooyoul;Lee, Changki
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.899-911
    • /
    • 2020
  • The data in tables are accurate and rich in information, which facilitates the performance of information extraction and question answering (QA) tasks. TableQA, which is based on tables, solves problems by understanding the table structure and searching for answers to questions. In this paper, we introduce both novice and intermediate Korean TableQA tasks that involve deducing the answer to a question from structured tabular data and using it to build a question answering pair. To solve Korean TableQA tasks, we use S3-NET, which has shown a good performance in machine reading comprehension (MRC), and propose a method of converting structured tabular data into a record format suitable for MRC. Our experimental results show that the proposed method outperforms a baseline in both the novice task (exact match (EM) 96.48% and F1 97.06%) and intermediate task (EM 99.30% and F1 99.55%).

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.