• Title, Summary, Keyword: Leptin

Search Result 603, Processing Time 0.032 seconds

Effects of Herbal Complex on Blood Glucose in Streptozotocin-induced Diabetic Rats and in Mice Model of Metabolic Syndrome (생약복합제의 Streptozotocin 유발 당뇨 및 대사성증후군 모델 동물에서의 혈당에 미치는 효과)

  • Park, Han-Seok;Lee, Yeon-Sil;Choi, Se-Jin;Kim, Jin-Kyu;Lee, Yun-Lyul;Kim, Hyun-Gwen;Koo, Sam-Hoi;Ku, Dae-Hoy;Ki, Seung-Il;Lim, Soon-Sung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.3
    • /
    • pp.196-204
    • /
    • 2009
  • This study was carried out to investigate the in vivo and in vitro inhibitory effect of a traditional herbal complex (HC) extract prepared from a mixture of four oriental herbs (Dioscorea Rhizoma, Glycine soja Sieb. et Zucc, Bombycis corpus, Fermented Glycine soja) that have been widely used for the treatment and prevention of diabetes mellitus on hyperglycemia. The water extract of HC showed potent inhibitory effect on $\alpha$-glucosidase with $IC_{50}$ value of 1.24 mg/mL. Additionally, the ethanol extract of HC was also found to exhibit significant inhibitory effect against protein tyrosine phosphatase $1{\beta}$ ($PTP1{\beta}$), which is known as a major regulator of both insulin and leptin signaling. In the $PTP1{\beta}$ inhibitory assay, the most active n-hexane fraction obtained from the ethanol extract of HC, was identified as a mixture of fatty acid derivatives by gas chromatography-mass spectrometry (GC-MS). In high-fat diet-low dose streptozotocin (STZ)-induced diabetic rat, the water extract of HC improved the oral glucose intolerance as compared with rosiglitazone. HC also caused a marked decrease of body weight and fasting blood glucose and a significant improvement on glucose tolerance in metabolic syndrome mice model. These findings support that this traditional HC may be useful in the control of blood glucose in diabetes mellitus and metabolic syndrome.

Relationship between Bone Morphological Microstructure and Inflammatory Markers in Growing Mice Fed a High Fat Diet (고지방식이 공급에 따른 성장기 마우스의 골의 형태학적 미세구조와 염증지표 변화)

  • Kim, Mi-Sung;Lee, Hyun-A;Kim, Ok-Jin;Sohn, Cheong-Min
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.481-487
    • /
    • 2011
  • Obesity not only reduces bone mineral density but also increases inflammatory markers. Therefore, we examined the change in inflammatory markers and morphological microstructure of the bones using a mouse model fed a high-fat diet. C57BL/6J 4-week-old male mice were divided into a control group (n = 6) and a experimental group (n = 6); the control group was provided with 10% Kcal fat diet, and the high-fat diet group was provided with 45% Kcal fat diet for 12 weeks using the free provision method. Blood was analyzed for inflammatory markers, and micro-computed tomography was used to measure the morphological microstructure of the femoral bone. The weight increases in the control group and high-fat diet group were $5.85{\pm}1.84g$ and $16.06{\pm}5.64g$, respectively (p < 0.01), glucose was $115.00{\pm}16.88mg/dL$ and $188.33{\pm}13.29mg/dL$ (p < 0.01), and triglycerides were $65.00{\pm}6.19mg/dL$ and $103.33{\pm}8.02mg/dL$ (p < 0.05) respectively. Leptin and interleukin (IL)-6 were significantly higher in the high-fat diet group than that in the control group (p < 0.01). As a result of a biochemical index analysis of bone metabolism, osteocalcin tended to be lower in the high-fat diet group, whereas CTx was significantly higher in the high-fat diet group compared to that in the control group (p < 0.01). The thickness of the bony trabecula was significantly narrower in the high-fat diet group than that in the control group (p < 0.05), and the gap in the bony trabecula was significantly wider in the high-fat diet group than that in the control group (p < 0.05). IL-6 and the gap in the bone trabecula, which was a morphological microstructure of the bones, showed a positive correlation (p < 0.05). Taken together, inducing obesity through a high-fat diet in mice during the growth phase caused a change in bone microstructure and was correlated with the inflammation index. Accordingly, restriction of excessive fat intake may be needed to suppress the inflammatory reactions and promote normal bone formation.

Effect of High Protein Diet and Resveratrol Supplementation on the Nutritional Status and Immunoreactivity in the Irradiation-induced Inflammatory Rats (방사선 조사된 흰쥐에서 고단백식이와 레스베라트롤 첨가가 영양상태 및 면역기능 증진에 미치는 효과)

  • Kim, Kyoung-Ok;Chun, Mi-Son;Kang, Seung-Hee;Kim, Hyun-Sook
    • Journal of Nutrition and Health
    • /
    • v.42 no.7
    • /
    • pp.605-614
    • /
    • 2009
  • Most cancer patients are treated with surgery, chemotherapy or radiation as anticancer therapies. Especially in the case of radiation, these treatments produce adverse effects such as vomiting, weight loss, anorexia, normal cell damage and malabsorption. The major goal of this study was to determine the effect of irradiation on the nutritional and immune status in irradiated rats. A secondary goal was to determine the effectiveness of high protein diet (HP) and resveratrol (Res) in minimizing the adverse effects of radiation. Rats were divided into four groups: normal diet (NP), HP, NP + Res and HP + Res groups. Each group was further divided into subgroups that received radiation (RT group) and one that did not (non-RT group). Each diet was supplied from $12^{th}$ day prior to irradiation treatment with irradiation dose of 17.5 Gy. The diets were continued until 10th day after radiation treatment and animals were sacrificed. The radiation treatment showed decreased body weight, serum protein and HDL levels and increased TG and LDL levels in nutritional status. HP, NP + Res and HP + Res groups reduced the level of serum LDL and TG in irradiated rats. NP + Res and HP + Res groups increased reduced albumin level of serum in RT group. In case of immune status, the radiation treat-ment showed decreased WBC, lymphocytes and increased neutrophil and eosinophil levels. The levels of serum IL-2 and IL-6 were significantly increased by radiation, however the cytokine levels decreased in all dietary treatment groups. These results showed that high protein diet and resveratrol supplementation seem to minimize the adverse effects of radiation on lipid nutritional status and inflammation response in the rat model.

Effect of Crude Saponins from Soybean Cake on Body Weight and Glucose Tolerance in High-Fat Diet Induced Obese Mice (대두박 사포닌 보충이 식이성 유도 비만마우스의 체중과 내당능에 미치는 영향)

  • Kim, Sung-Mi;Seo, Kwon-Il;Park, Kyung-Wuk;Jeong, Yong-Kee;Cho, Young-Su;Kim, Myung-Joo;Kim, Eun-Jung;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2009
  • This study investigated the beneficial effects of crude saponins from soybean cake on body weight and glucose tolerance in high-fat (37% calories from fat) diet fed C57BL/6 mice. The mice were supplemented with three doses of saponins (0.5%, 1.0%, and 1.5%, wt/wt) and 1.0% Garcinia cambogia (wt/wt), positive control for 9 weeks. The body weight, visceral fat weight and epididymal adipocyte area were significantly reduced in the saponin supplemented groups in a dose dependent manner compared to the high-fat group. Saponins did not significantly affect food intake; however, cambogia significantly lowered food intake compared to the high-fat fed control group. The crude saponins from soybean cake supplement significantly lowered plasma leptin, triglyceride and total cholesterol levels, whereas they significantly elevated the fecal excretion of triglyceide in a dose dependent manner compared to the high-fat group. Cambogia did not affect the fecal excretion of lipid in the diet-induced obese mice. Supplementation of 1.5% saponin reduced the hepatic triglyceride content compared to the high-fat group. High-fat induced glucose intolerance with the elevation of blood glucose levels compared to the normal group; however, the saponins supplement significantly improved postprandial glucose levels. After 9 weeks of being fed a high-fat diet, the mice presented with significantly increased activities of hepatic fatty acid synthase and fatty acid ${\beta}$-oxidation; however, saponins and cambogia normalized these activities. These results indicate that saponins from soybean cake exhibit a potential anti-obesity effect and may prevent glucose intolerance by reducing body weight and plasma lipids, increasing fecal lipid excretion and regulating hepatic lipid metabolism in high-fat fed mice.

Anti-obesity Effects of Peucedanum japonicum Thunberg L. on 3T3-L1 Cells and High-fat Diet-induced Obese Mice (식방풍잎(Peucedanum japonicum Thunberg L.)의 물추출물이 3T3-L1 세포와 고지방식이로 유도된 마우스에서 항비만 효과)

  • Jung, Ho-Kyung;Sim, Mi-Ok;Jang, Ji-Hun;Kim, Tae-Muk;An, Byeong-Kwan;Kim, Min-Suk;Jung, Won Seok
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Obesity is a pro-inflammatory state that contributes to the development of metabolic disorders such as hyperlipidemia, insulin resistance, type 2 diabetes, non-alcoholic fatty liver, and cardiovascular disease. In this study, we evaluated the inhibition of adipogenesis in 3T3-L1 cells and in high-fat diet (HFD)-induced obese mice by Peucedanum japonicum Thunberg L. water extract (PJT). Lipid accumulation measurement indicates that PJT markedly inhibited adipogenesis in a dose-dependent manner. RT-PCR results demonstrated that the mRNA expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer binding protein-α (C/EBPα) in 3T3-L1 cells were significantly down-regulated by PJT treatment. Oral administration of PJT (100, 300, and 500 ㎎/㎏, b.w/daily for 4 weeks) was conducted in high-fat diet induced obese mice and C57BL/6 mice. The PJT-administered group of HFD-induced mice had a lower body weight gain, along with decreased serum levels of glucose, triglycerides, and total cholesterol compared with the control mice, however, the HDL-cholesterol/total cholesterol ratio was increased. Furthermore, the elevated mRNA expression levels of adipogenesis related genes in the white adipose tissue of obese mice were significantly suppressed by PJT. These results indicate that PJT exhibits anti-obesity effects in obese mice by decreasing in serum lipid levels and lipogenesis related gene.

Anti-Obesity Effect of Pine Cone (Pinus koraiensis) Supercritical Extract in High-Fat Diet-Induced Obese Mice (고지방식이로 유도한 비만 Mice에서 잣송이 초임계 추출물의 항비만 효과)

  • Lee, Dasom;Lee, Minhee;Kim, Hyesook;Jeong, Tuk-Rai;Yang, Hyun-Pil;Hyun, Heo Seok;Lee, Jeongmin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1701-1707
    • /
    • 2016
  • The present study investigated the anti-obesity effect of pine cone (PC, Pinus koraiensis) supercritical extract in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were treated with HFD, HFD+catechin, and HFD+PC [two different doses, 20 mg/kg body weight (b.w.) and 100 mg/kg b.w.] in each AIN93G supplement for 8 weeks. Treatment of HFD mice with both low and high doses of PC significantly reduced body weight gain compared to HFD mice. Liver weight of mice was reduced in both the low and high dose PC-supplemented groups (24.19% and 19.83%, respectively). Total adipose tissue weight of mice was reduced in both the low and high dose PC-supplemented groups (45.54% and 62.66%, respectively). Serum total cholesterol, triglyceride, LDL cholesterol, and HDL cholesterol were reduced in the low and high dose PC-supplemented groups, and ratios of HDL cholesterol to LDL cholesterol increased by 94.55% in the high dose PC-supplemented group. Serum leptin was significantly reduced in the low and high dose PC-supplemented groups (28.14% and 62.72%, respectively). These results were supported by genetic expression of protein and enzymes related to lipid metabolism assessed by real-time PCR. There was significant reduction of lipid regulatory transcription factors such as $PPAR-{\gamma}$, C/EBP, and SREBP and lipid enzymes such as fatty acid synthesis and lipoprotein lipase in the low and high dose PC-supplemented groups. However, there was no statistical difference between low and high dose PC treatments. These results suggest that pine cone supercritical extract supplementation is able to regulate serum lipid profiles by reducing total cholesterol, triglyceride, and LDL cholesterol levels, followed by regulation of expression of lipid metabolic factors, resulting in reduction of weight gain in HFD-induced obese mice.

Processed Panax ginseng, sun ginseng, inhibits the differentiation and proliferation of 3T3-L1 preadipocytes and fat accumulation in Caenorhabditis elegans

  • Lee, Hyejin;Kim, Jinhee;Park, Jun Yeon;Kang, Ki Sung;Park, Joeng Hill;Hwang, Gwi Seo
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.257-267
    • /
    • 2017
  • Background: Heat-processed ginseng, sun ginseng (SG), has been reported to have improved therapeutic properties compared with raw forms, such as increased antidiabetic, anti-inflammatory, and antihyperglycemic effects. The aim of this study was to investigate the antiobesity effects of SG through the suppression of cell differentiation and proliferation of mouse 3T3-L1 preadipocyte cells and the lipid accumulation in Caenorhabditis elegans. Methods: To investigate the effect of SG on adipocyte differentiation, levels of stained intracellular lipid droplets were quantified by measuring the oil red O signal in the lipid extracts of cells on differentiation Day 7. To study the effect of SG on fat accumulation in C. elegans, L4 stage worms were cultured on an Escherichia coli OP50 diet supplemented with $10{\mu}g/mL$ of SG, followed by Nile red staining. To determine the effect of SG on gene expression of lipid and glucose metabolism-regulation molecules, messenger RNA (mRNA) levels of genes were analyzed by real-time reverse transcription-polymerase chain reaction analysis. In addition, the phosphorylation of Akt was examined by Western blotting. Results: SG suppressed the differentiation of 3T3-L1 cells stimulated by a mixture of 3-isobutyl-1-methylxanthine, dexamethasone, and insulin (MDI), and inhibited the proliferation of adipocytes during differentiation. Treatment of C. elegans with SG showed reductions in lipid accumulation by Nile red staining, thus directly demonstrating an antiobesity effect for SG. Furthermore, SG treatment down-regulated mRNA and protein expression levels of peroxisome proliferator-activated receptor subtype ${\gamma}$ ($PPAR{\gamma}$) and CCAAT/enhancer-binding protein-alpha ($C/EBP{\alpha}$) and decreased the mRNA level of sterol regulatory element-binding protein 1c in MDI-treated adipocytes in a dose-dependent manner. In differentiated 3T3-L1 cells, mRNA expression levels of lipid metabolism-regulating factors, such as amplifying mouse fatty acid-binding protein 2, leptin, lipoprotein lipase, fatty acid transporter protein 1, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase, were increased, whereas that of the lipolytic enzyme carnitine palmitoyltransferase-1 was decreased. Our data demonstrate that SG inversely regulated the expression of these genes in differentiated adipocytes. SG induced increases in the mRNA expression of glycolytic enzymes such as glucokinase and pyruvate kinase, and a decrease in the mRNA level of the glycogenic enzyme phosphoenol pyruvate carboxylase. In addition, mRNA levels of the glucose transporters GLUT1, GLUT4, and insulin receptor substrate-1 were elevated by MDI stimulation, whereas SG dose-dependently inhibited the expression of these genes in differentiated adipocytes. SG also inhibited the phosphorylation of Akt (Ser473) at an early phase of MDI stimulation. Intracellular nitric oxide (NO) production and endothelial nitric oxide synthase mRNA levels were markedly decreased by MDI stimulation and recovered by SG treatment of adipocytes. Conclusion: Our results suggest that SG effectively inhibits adipocyte proliferation and differentiation through the downregulation of $PPAR{\gamma}$ and $C/EBP{\alpha}$, by suppressing Akt (Ser473) phosphorylation and enhancing NO production. These results provide strong evidence to support the development of SG for antiobesity treatment.

Effects of Soy Protein, its Hydrolysate and Peptide Fraction on Lipid Metabolism and Appetite-Related Hormones in Rats (대두단백질과 그의 가수분해물 및 펩타이드 분획물이 흰쥐의 지질대사 및 식욕 관련 호르몬에 미치는 영향)

  • Park, Ji-Hye;Park, Mi-Na;Lee, Im-Sik;Kim, Yong-Ki;Kim, Wan-Sik;Lee, Yeon-Sook
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • This study was aimed to investigate whether soy protein hydrolysates had beneficial effects on serum and tissue lipid contents and appetite-related hormones as compared with intact soy protein. Four-week-old male Sprague-Dawley rats were fed AIN-93M diet containing high fat (18% w/w) with low protein (10% w/w). After four weeks, the rats were divided into four groups (n = 8/group) and fed experimental diets with different nitrogen sources and levels, respectively; 10% soy protein isolate (10SPI), 25% soy protein isolate (25SPI), 25% soy protein hydrolysates (25SPH) and 25% soy macro-peptide fractions (25SPP, MW $\geq$ 10,000) for six weeks. Weight gain was significantly higher in 25% nitrogen sources-fed groups than in 10% group (10SPI). In 25SPP, perirenal fat mass and serum total lipid were significantly lower than in other groups. As for appetite-related hormones, serum ghrelin concentration was not shown to be different among groups but leptin concentration was significantly decreased in 25SPP. It can be concluded that soy macro-peptide fractions as compared with intact soy protein may have beneficial effects on reducing fat mass and serum lipid.

Effect of Fermented Yacon (Smallanthus Sonchifolius) Leaves Tea on Blood Glucose Levels and Glucose Metabolism in High-Fat Diet and Streptozotocin-Induced Type 2 Diabetic Mice (야콘잎 발효차가 고지방식이와 스트렙토조토신으로 유도한 제2형 당뇨마우스의 혈당 및 당대사에 미치는 영향)

  • Kim, In-Sook;Lee, Jin;Lee, Jeom-Sook;Shin, Dong-Young;Kim, Myung-Joo;Lee, Mi-Kyung
    • Journal of Nutrition and Health
    • /
    • v.43 no.4
    • /
    • pp.333-341
    • /
    • 2010
  • The aim of this study was to investigate the hypolgycemic activity of water extract of fermented yacon (Smallanthus sonchifolius) leaves tea (Yacon LWE) in high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice. Male ICR mice were fed with a HFD (37% calories from fat) for 4 weeks prior to intraperitoneal injection with STZ (100 mg/kg body weight). Diabetic mice were supplemented with two doses of Yacon LWE (0.16% and 0.8%, wt/wt) for 6 weeks. The supplementation of high-dose Yacon LWE significantly lowered blood glucose levels and plasma ALT and AST activities compared with the control group. High-dose Yacon LWE also improved the insulin tolerance without any changes in plasma and pancreatic insulin concentrations in HFD/STZ-induced diabetic mice. Yacon LWE supplementation increased the insulin staining of pancreatic $\beta$-cells in a dose-dependent manner. Both 0.16% and 0.8% of Yacon LWE significantly elevated plasma leptin concentration, hepatic glucokinase activity and glucokinase/glucose-6-phosphatase ratio compared with the control group. However, glycosylated hemoglobin concentration was not different among the groups. These results suggest that high-dose Yacon LWE lowers the blood glucose level partly by enhancing insulin sensitivity and hepatic glucose metabolism in type 2 diabetic mice.

The Effects of Several Halophytes on Insulin Resistance in Otsuka Long-evans Tokushima Fatty Rats (OLETF 쥐에서 칠면초와 세발나물의 인슐린 저항성 개선 효과)

  • Cho, Jeong-Yong;Huang, Zhangjun;Park, Sun-Young;Park, Kyung-Hee;Pai, Tong-Kun;Kim, So-Young;Kim, Haeng-Ran;Ham, Kyung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.100-107
    • /
    • 2014
  • We evaluated preventive effects of Suaeda japonica (SJ) and Spergularia marina Griseb (SMG) on the insulin resistance in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. The 10-week old OLETF rats were fed diets containing 3% (w/w) SJ and SMG for 18 weeks. Fasting blood glucose levels in SJ and SMG groups, measured using the oral glucose tolerance test, were lower than that of the control rats. The SMG group showed significantly lower levels of insulin, glycated hemoglobin, triglyceride, and total cholesterol than the control group. In addition, these levels were relatively lower in the SJ group than those in the control rats. The SJ and SMG groups had relatively lower protein levels of nuclear factor-kappa B (NF-${\kappa}B$) p65 in adipose tissue and serine phosphorylated insulin receptor substrate 1 (IRS-1) in skeletal muscle than the control group. These results suggest that SJ and SMG prevent insulin resistance and SMG in particular reduces blood triglyceride and total cholesterol levels.