• Title, Summary, Keyword: Levi form of the boundary

Search Result 3, Processing Time 0.024 seconds

GEOMETRIC CHARACTERIZATION OF q-PSEUDOCONVEX DOMAINS IN ℂn

  • Khedhiri, Hedi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.543-557
    • /
    • 2017
  • In this paper, we investigate the notion of q-pseudoconvexity to discuss and describe some geometric characterizations of q-pseudoconvex domains ${\Omega}{\subset}{\mathbb{C}}^n$. In particular, we establish that ${\Omega}$ is q-pseudoconvex, if and only if, for every boundary point, the Levi form of the boundary is semipositive on the intersection of the holomorphic tangent space to the boundary with any (n-q+1)-dimensional subspace $E{\subset}{\mathbb{C}}^n$. Furthermore, we prove that the Kiselman's minimum principal holds true for all q-pseudoconvex domains in ${\mathbb{C}}^p{\times}{\mathbb{C}}^n$ such that each slice is a convex tube in ${\mathbb{C}}^n$.

SOBOLEV ESTIMATES FOR THE LOCAL EXTENSION OF BOUNDARY HOLOMORPHIC FORMS ON REAL HYPERSURFACES IN ℂn

  • Cho, Sanghyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.479-491
    • /
    • 2013
  • Let M be a smooth real hypersurface in complex space of dimension $n$, $n{\geq}3$, and assume that the Levi-form at $z_0$ on M has at least $(q+1)$-positive eigenvalues, $1{\leq}q{\leq}n-2$. We estimate solutions of the local $\bar{\partial}$-closed extension problem near $z_0$ for $(p,q)$-forms in Sobolev spaces. Using this result, we estimate the local solution of tangential Cauchy-Riemann equation near $z_0$ in Sobolev spaces.

EXPLICIT SOBOLEV ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION ON PARAMETERS

  • Cho, Sang-Hyun;Choi, Jae-Seo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.321-338
    • /
    • 2008
  • Let $\bar{M}$ be a smoothly bounded pseudoconvex complex manifold with a family of almost complex structures $\{L^{\tau}\}_{{\tau}{\in}I}$, $0{\in}I$, which extend smoothly up to bM, the boundary of M, and assume that there is ${\lambda}{\in}C^{\infty}$(bM) which is strictly subharmonic with respect to the structure $L^0|_{bM}$ in any direction where the Levi-form vanishes on bM. We obtain explicit estimates for the $\bar{\partial}$-Neumann problem in Sobolev spaces both in space and parameter variables. Also we get a similar result when $\bar{M}$ is strongly pseudoconvex.