• Title, Summary, Keyword: Life Cycle

Search Result 4,915, Processing Time 0.057 seconds

Life cycle determination of water distribution system using life cycle energy analysis (생애주기 에너지 분석을 이용한 상수관망의 생애주기 결정)

  • Lee, Seung-Yub;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • When designing Water Distribution System (WDS), determination of life cycle for WDS needs to be preceded. And designer should conduct comprehensive design including maintenance and management strategies based on the determined life cycle. However, there are only a few studies carried out until now, and criteria to determine life cycle of WDS are insufficient. Therefore, methodology to determine life cycle of WDS is introduced in this study by using Life Cycle Energy Analysis (LCEA). LCEA adapts energy as an environmental impact criterion and calculates all required energy through the whole life cycle. The model is build up based on the LCEA methodology and model itself can simulate the aging and breakage of pipes through the target life cycle. In addition the hydraulic analysis program EPANET2.0 is linked to developed model to analyze hydraulic factors. Developed model is applied to two WDSs which are A WDS and B WDS. Model runs for 1yr to maximum 100yr target life cycle for both WDSs to check the energy tendency as well as to determine optimal life cycle. Results show that 40yr and 54yr as optimal life cycle for each WDS, and tendency shows the effective energy is keep changing according to the target life cycle. Introduced methodology is expected to use as an alternative option for determining life cycle of WDS.

The Development of Knowledge Management System Based on a Knowledge Life Cycle (지식 Life Cycle을 기반으로 한 지식관리 시스템 개발)

  • Han, Kwan-Hee;Song, Hee-Kyoung
    • IE interfaces
    • /
    • v.13 no.1
    • /
    • pp.54-59
    • /
    • 2000
  • Presented in this paper is a development of knowledge management system based on knowledge life cycle. Knowledge processes in an organization have a life cycle from creation to disposal. So, KMSs have to support the entire life cycle of knowledge. This paper proposes desired knowledge life cycle model, and extracted functional requirements for KMS. For the fulfillment of this requirements, we developed KMS called XM-Brenic/MSX. This system has 6 components for supporting the knowledge life cycle.

  • PDF

Design of a Plant Life Cycle Data Management System for Plant Operation and Maintenance (플랜트 설계 및 운영 데이터 통합관리 시스템 설계)

  • Lee, Jae Hyun;Suh, Hyo Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2016
  • Plant life cycle consists of design, construction, certification, operation, and maintenance phases, and various and enormous plant life cycle data is involved in each phase. Plant life cycle data should be linked with each other based on its proper relationships, so that plant operators can access necessary plant data during their regular operations and maintenance works. Currently, the relationships of plant life cycle data may not be defined explicitly, or they are scattered over several plant information systems. This paper proposes high level design of a plant life cycle data management system based on pre-defined plant life cycle database design. ISO-15926 standard is adapted for the database design. User-interface designs of the plant life cycle data management system are explained based on analysis of plant owners' requirements. A conceptual design of the database is also described with the entity-relationship diagram.

Analysis of the Life Cycle of Menus in Restaurants - A Case Study of 'T' Restaurant - (레스토랑 메뉴 수명주기(Menu Life Cycle) 패턴 분석 - T레스토랑 사례를 중심으로 -)

  • Shin, Seo-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.205-213
    • /
    • 2012
  • This study investigated the life cycle of menus and made suggestions on the appropriate time for when new menus should be developed. For this purpose, a total of 636 customers who visited 'T' Restaurant more than 25 times in the past three years were used for analysis. After estimating product life cycles based on sales and selling period, an empirical study was conducted. In terms of product life cycle, a growth stage was observed in the category of pasta and pizza in both stores A and B, whereas sales in the rice category stayed constant. Regarding trend in seasonal sales, a big difference was detected between the two stores. While store A was already in the decline stage of the life cycle in all menu categories, store B remained in the growth stage. In terms of menu life cycle, the product life cycle of long-lived products was observed in the pasta category in both stores A and B. While the pizza category was in the growth stage, the product life cycle of long-lived products was observed in the rice category. It is expected that the results of this study could be useful in development of new menus and product life cycle management to fulfill diverse customer needs in the dining-out business.

The thinking and approach method of Life Cycle Engineering for products (제품의 Life Cycle Engineering 사고와 접근방법)

  • 하종배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.976-979
    • /
    • 2000
  • This paper describes a Life Cycle Engineering approach which is able to optimize a product under technical, ecological and economical requirements. The methodology of Life Cycle Engineering comes with a holistic approach for the analysis of processes, products, systems or services. The Life Cycle Engineering approach is combining environmental and economical parameters and using the technical requirements for setting the baseline for the studies. This paper also describes the approach method for ?ㄴ composed in large numbers sub-parts.

  • PDF

The Study of Knowledge management system architecture based on a life-cycle of knowledge (지식 Life-Cycle을 기반으로 한 지식 관리 시스템 구조 연구)

  • 이종국;송희경;한관희
    • Proceedings of the Korea Database Society Conference
    • /
    • /
    • pp.75-84
    • /
    • 1999
  • 본 논문에서는 지식에 대한 개념을 정의하기 보다 지식의 life-cycle을 통한 지식의 생성과 소멸을 모델화함으로 지식을 설명하려 한다. 본 논문은 노나카의 지식 창조 모델을 기반으로 하고 기존의 KMS들을 분석하여 일반적인 지식 life-cycle 모델을 도출하였으며, 기존 모델의 문제점을 보완하여 새로운 지식 life-cycle 모델을 만들었다. 이 모델과 앞으로의 지식관리 시스템 발전 방향을 고려하여 지식 관리 시스템 아키텍쳐를 제시하였다. 본 논문에서는 이 아키텍쳐를 근거로 지식 관리 시스템을 구현하기 위한 6개의 컴포넌트를 도출하였다 6개의 컴포넌트는 지식 생성, 지식 분배, 지식 측정, 지식연결, 지식 검색, 지식 저장이다. 이 컴포넌트들로 지식 관리 시스템의 prototype을 구현해 본 결과 지식life-cycle을 단계적, 부분적으로 지원하지만 부족한 부분이 있는 것을 발견하였다. 향후에는 지식 생성과 지식 연결 컴포넌트를 강화하여 전체적인 지식 life-cycle을 지원할 예정이다.

  • PDF

The Study of Knowledge management system architecture based on a life-cycle of knowledge (지식 Life-Cycle을 기반으로 한 지식 관리 시스템 구조 연구)

  • 이종국;송희경;한관희
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • /
    • pp.75-84
    • /
    • 1999
  • 본 논문에서는 지식에 대한 개념을 정의하기 보다 지식의 life-cycle을 통한 지식의 생성과 소멸을 모델화함으로 시식을 설명하려 한다. 본 논문은 노나카의 지식 창조 모델을 기반으로 하고 기존의 KMS들을 분석하여 일반적인 지식 life-cycle 모델을 도출하였으며, 기존 모델의 문제점을 보완하여 새로운 지식 life-cycle 모델을 만들었다. 이 모델과 앞으로의 지식관리 시스템 발전 방향을 고려하여 지식 관리 시스템 아키텍쳐를 제시하였다. 본 논문에서는 이 아키텍쳐를 근거로 지식 관리 시스템을 구현하기 위한 6개의 컴포넌트를 도출하였다. 6개의 컴포넌트는 지식 생성, 지식 분배, 지식 측정, 지식 연결, 지식 검색, 지식 저장이다. 이 컴포넌트들로 지식 관리 시스템의 prototype을 구현해 본 결과 지식 life-cycle을 단계적, 부분적으로 지원하지만 부족한 부분이 있는 것을 발견하였다. 향후에는 지식 생성과 지식 연결 컴포넌트를 강화하여 전체적인 지식 life-cycle을 지원할 예정이다.

  • PDF

A Study on the Optimal Equipment Selection of Series Systems using Life Cycle Cost and Failure Cost (Failure Cost와 Life Cycle Cost를 고려한 연속시스템에 대한 최적 장치 선택에 관한 연구)

  • Jin Sang-Hwa;Kim Yong-Ha;Song Hee-Oeul;Yeo Yeong-Koo;Kim In-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4
    • /
    • pp.55-59
    • /
    • 2004
  • In this study, the required life cycle cost is evaluated in consideration of the equipment's availability during its lift cycle. In order to meet the maximum availability required by the process, the failure cost and life cycle cost is assessed The optimal equipment selection method is presented according to the analysis of the failure cost and life cycle cost. For the systems in which equipments are connected serially, the optimal equipments are selected by minimizing the life cycle cost and satisfying the required system availability goal. In addition, the selection methods and lift cycle cost are analyzed according to the cost variation of the equipment. By using the life cycle evaluation procedure, the failure cost and maintenance cost needed during the life cycle of the equipment can be presented.

Technology Readiness Level Assignment to Industrial Plant System Life Cycle

  • Salim, Shelly;Jo, Raehyeok;Lee, Taekyeong;Lee, Joongyoon
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • During the industrial plant system life cycle, required technologies are developed and assessed to analyze their performance, risks and costs. The assessment is called technology readiness assessment (TRA) and the measure of readiness is called technology readiness level (TRL). The TRL consists of 9 levels and through the TRL assessment, the technology to be developed and its components are assigned to their appropriate TRL. TRL assessment should be performed in each life cycle stages to monitor the technology readiness and analyze the potential risks and costs. However, even though the concept of TRL has been largely adopted by numerous organizations and industry, direct and clear assignment of target TRL for each life cycle stage has been overlooked. Direct mapping/assignment of target TRL for each life cycle has benefits as follow: (1) the technical risks condition of each life cycle stage can be better understood, (2) cost incurred if the technology development is failed can be analyzed in each life cycle stage, and (3) more effective decision making because the technology readiness achievement for each life cycle stages is agreed beforehand. In this paper, we propose a steel-making plant system life cycle and TRL assignment to each of the system life cycle stage. By directly assigning target TRL for each life cycle stages, we look forward to a more coordinated (in terms of exit criteria) and highly effective (in terms of technical risks identification and eventually prevent project failure) technology development and assessment processes.

A Study on the Life Cycle Energy and $CO_2$ in the Apartment Housings (공동주택의 라이프사이클 에너지와 이산화탄소 추정에 관한 연구)

  • Lee, Kang-Hee;Chae, Chang-U
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.89-96
    • /
    • 2008
  • The environment has played a key role to improve the living condition and develop the industry. In building industries, we should consider the environment and mitigate the environmental affect. For mitigating the its affect, various areas of building technology have been developed and applied into filed work. In addition, the process in applying into field requires to conduct the assessment of the environmental affect and improve its applied technology. A lot of assessment methods are proposed in evaluate the building condition such as post-occupancy evaluation, life cycle management and life cycle assessment. Among these assessment methods, life cycle assessment is effectively utilized the environmental affect in building life cycle. Therefore, this paper aimed at analyzing the energy consumption and $CO_2$ emission in building life cycle, using the life cycle assessment and application of the example in apartment housing. This study shows that the maintenance and the production of building materials stage shares most of the amount of energy consumption and $CO_2$ emission and therefore plays an important role to planning the building in terms of the life cycle. Second, the other stages brings about a very small amount. It is important to decide the building shape and contents to mitigate the environmental affect in terms of material, volume, the pattern of the energy use and others.