With the growth of the IoT market, malware security threats are steadily increasing for devices that use the linux architecture. However, except for the major malware causing serious security damage such as Mirai, there is no related technology or research of security community about linux malware. In addition, the diversity of devices, vendors, and architectures in the IoT environment is further intensifying, and the difficulty in handling linux malware is also increasing. Therefore, in this paper, we propose an analysis system based on ELF which is the main format of linux architecture, and a binary based analysis system considering IoT environment. The ELF-based analysis system can be pre-classified for a large number of malicious codes at a relatively high speed and a relatively low-speed binary-based analysis system can classify all the data that are not preprocessed. These two processes are supposed to complement each other and effectively classify linux-based malware.