• Title, Summary, Keyword: Lithoautotrophic ammonium oxidation

Search Result 2, Processing Time 0.029 seconds

LITHOAUTOTROPHIC NITROGEN REMOVAL WITH ANAEROBIC GRANULAR SLUDGE AS SEED BIOMASS AND ITS MICROBIAL COMMUNITY

  • Ahn, Young-Ho;Lee, Jin-Woo;Kim, Hee-Chul;Kwon, Soo-Youl
    • Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • Autotrophic nitrogen removal and its microbial community from a laboratory scale upflow anaerobic sludge bed reactor were characterized with dynamic behavior of nitrogen removal and sequencing result of molecular technique (DNA extraction, PCR and amplification of 16S rDNA), respectively. In the experiment treating inorganic wastewater, the anaerobic granular sludge from a full-scale UASB reactor treating industrial wastewater was inoculated as seed biomass. The operating results revealed that an addition of hydroxylamine would result in lithoautotrophic ammonium oxidation to nitrite/nitrate, and also hydrazine would play an important role for the success of sustainable nitrogen removal process. Total N and ammonium removal of 48% and 92% was observed, corresponding to nitrogen conversion of 0.023 g N/L-d. The reddish brown-colored granular sludge with a diameter of $1{\sim}2\;mm$ was observed at the lower part of sludge bed. The microbial characterization suggests that an anoxic ammonium oxidizer and an anoxic denitrifying autotrophic nitrifier contribute mainly to the nitrogen removal in the reactor. The results revealed the feasibility on development of high performance lithoautotrophic nitrogen removal process with its microbial granulation.

Lithoautotrophic Nitrogen Removal from Ammonium-rich Wastewater in Aerobic Upflow Sludge Bed(AUSB) Reactor (호기성 상향류 슬러지상 반응조를 이용한 고농도 암모늄 함유폐수의 독립영양 질소제거)

  • Ahn, Young-Ho;Choi, Hoon-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.8
    • /
    • pp.852-859
    • /
    • 2006
  • The novel microbial process such as Anammox(anaerobic ammonium oxidation) and Canon(completely autotrophic nitrogen removal over nitrite) processes is promising biotechnology to remove nitrogen from ammonium-rich wastewater like anaerobic sludge digester liquid. In this research, a new Canon-type nitrogen removal process adopting upflow granular sludge bed type configuration was investigated on its feasibility and process performance, using synthetic wastewater and sludge digester liquids. Air as an oxygen source was provided in an external aeration chamber with flow recirculation. In the first experiment using the synthetic wastewater(up to 110 mg $NH_4$-N $L^{-1}$), the ammonium removal was about 95%(92% for T-N) at effective hydraulic retention time(HRT) for 3.8 days. In the second experiment using the sludge digester liquids($438{\pm}26$ mg $NH_4$-N $L^{-1}$), the total nitrogen removal was $94{\pm}1.7%$ at HRT for 5.4 days and $76{\pm}1.5%$ at HRT for 3.8 days, respectively. Little nitrite and nitrate were observed in the effluent of both experiments. The process revealed quite a lower oxygen($0.29{\sim}0.59$ g $O_2$ $g^{-1}N$) and less alkalinity($3.1{\sim}3.4$ g $CaCO_3$ $g^{-1}N$) consumption as compared to other new technology in microbial nitrogen removal. The process also offers the economical compact reactor configuration with excellent biomass retention, resulting in lower cost for investment and maintenance.