• Title, Summary, Keyword: MBR

Search Result 367, Processing Time 0.048 seconds

NBR-Safe Transform: Lower-Dimensional Transformation of High-Dimensional MBRs in Similar Sequence Matching (MBR-Safe 변환 : 유사 시퀀스 매칭에서 고차원 MBR의 저차원 변환)

  • Moon, Yang-Sae
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.693-707
    • /
    • 2006
  • To improve performance using a multidimensional index in similar sequence matching, we transform a high-dimensional sequence to a low-dimensional sequence, and then construct a low-dimensional MBR that contains multiple transformed sequences. In this paper we propose a formal method that transforms a high-dimensional MBR itself to a low-dimensional MBR, and show that this method significantly reduces the number of lower-dimensional transformations. To achieve this goal, we first formally define the new notion of MBR-safe. We say that a transform is MBR-safe if a low-dimensional MBR to which a high-dimensional MBR is transformed by the transform contains every individual low-dimensional sequence to which a high-dimensional sequence is transformed. We then propose two MBR-safe transforms based on DFT and DCT, the most representative lower-dimensional transformations. For this, we prove the traditional DFT and DCT are not MBR-safe, and define new transforms, called mbrDFT and mbrDCT, by extending DFT and DCT, respectively. We also formally prove these mbrDFT and mbrDCT are MBR-safe. Moreover, we show that mbrDFT(or mbrDCT) is optimal among the DFT-based(or DCT-based) MBR-safe transforms that directly convert a high-dimensional MBR itself into a low-dimensional MBR. Analytical and experimental results show that the proposed mbrDFT and mbrDCT reduce the number of lower-dimensional transformations drastically, and improve performance significantly compared with the $na\"{\i}ve$ transforms. These results indicate that our MBR- safe transforms provides a useful framework for a variety of applications that require the lower-dimensional transformation of high-dimensional MBRs.

Efficient Time-Series Subsequence Matching Using MBR-Safe Property of Piecewise Aggregation Approximation (부분 집계 근사법의 MBR-안전 성질을 이용한 효율적인 시계열 서브시퀀스 매칭)

  • Moon, Yang-Sae
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.503-517
    • /
    • 2007
  • In this paper we address the MBR-safe property of Piecewise Aggregation Approximation(PAA), and propose an of efficient subsequence matching method based on the MBR-safe PAA. A transformation is said to be MBR-safe if a low-dimensional MBR to which a high- dimensional MBR is transformed by the transformation contains every individual low-dimensional sequence to which a high-dimensional sequence is transformed. Using an MBR-safe transformation we can reduce the number of lower-dimensional transformations required in similar sequence matching, since it transforms a high-dimensional MBR itself to a low-dimensional MBR directly. Furthermore, PAA is known as an excellent lower-dimensional transformation single its computation is very simple, and its performance is superior to other transformations. Thus, to integrate these advantages of PAA and MBR-safeness, we first formally confirm the MBR-safe property of PAA, and then improve subsequence matching performance using the MBR-safe PAA. Contributions of the paper can be summarized as follows. First, we propose a PAA-based MBR-safe transformation, called mbrPAA, and formally prove the MBR-safeness of mbrPAA. Second, we propose an mbrPAA-based subsequence matching method, and formally prove its correctness of the proposed method. Third, we present the notion of entry reuse property, and by using the property, we propose an efficient method of constructing high-dimensional MBRs in subsequence matching. Fourth, we show the superiority of mbrPAA through extensive experiments. Experimental results show that, compared with the previous approach, our mbrPAA is 24.2 times faster in the low-dimensional MBR construction and improves subsequence matching performance by up to 65.9%.

Trends in the Technology and Market of Membrane Bioreactors (MBR) for Wastewater Treatment and Reuse and Development Directions (하.폐수 처리용 MBR 분리막 기술 및 산업동향과 발전방향)

  • Cho, Il Hyoung;Kim, Ji Tae
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.24-44
    • /
    • 2013
  • The MBR technology has evolved rapidly over the past two decades with significant gains in performance and reliability, and reductions in costs. Membrane bioreactors (MBR) technology is widely recognised as offering a key option for enhanced wastewater treatment or reuse. The objective of this paper is then to critically review the remarkable achievement on the research and commercial applications of membrane bioreactor (MBR) technology and to present current and potential MBR markets on a global scope. This brief review of the technology incorporates five key aspects : 1) evolution of MBR practice, 2) the commercial technologies of MBRs, 3) the largest MBR installations globally (e.g. > $10,000m^3/day$), 4) MBR market growth, and 5) directions for future research. Finally, the development directions of economical, environmental and technical aspects in MBRs; 1) investment costs; 2) effluent water quality; 3) membrane materials and modules; 4) MBR equipment and treatment process; 5) operating costs (higher energy & chemical consumption); and 6) sustainability such as anaerobic MBRs in the coming years were addressed.

An Efficient MBR Compression Technique for Main Memory Multi-dimensional Indexes (메인 메모리 다차원 인덱스를 위한 효율적인 MBR 압축 기법)

  • Kim, Joung-Joon;Kang, Hong-Koo;Kim, Dong-Oh;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.13-23
    • /
    • 2007
  • Recently there is growing Interest in LBS(Location Based Service) requiring real-time services and the spatial main memory DBMS for efficient Telematics services. In order to optimize existing disk-based multi-dimensional Indexes of the spatial main memory DBMS in the main memory, multi-dimensional index structures have been proposed, which minimize failures in cache access by reducing the entry size. However, because the reduction of entry size requires compression based on the MBR of the parent node or the removal of redundant MBR, the cost of MBR reconstruction increases in index update and the efficiency of search is lowered in index search. Thus, to reduce the cost of MBR reconstruction, this paper proposed the RSMBR(Relative-Sized MBR) compression technique, which applies the base point of compression differently in case of broad distribution and narrow distribution. In case of broad distribution, compression is made based on the left-bottom point of the extended MBR of the parent node, and in case of narrow distribution, the whole MBR is divided into cells of the same size and compression is made based on the left-bottom point of each cell. In addition, MBR was compressed using a relative coordinate and size to reduce the cost of search in index search. Lastly, we evaluated the performance of the proposed RSMBR compression technique using real data, and proved its superiority.

  • PDF

Reduction of biofouling using vanillin as a quorum sensing inhibitory agent in membrane bioreactors for wastewater treatment

  • Nam, AnNa;Kweon, JiHyang;Ryu, JunHee;Lade, Harshad;Lee, ChungHak
    • Membrane Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.189-203
    • /
    • 2015
  • Membrane biofouling impedes wide application of membrane bioreactor (MBR) for wastewater treatment. Recently, quorum sensing (QS) mechanisms are accounted for one of major mechanisms in biofouling of MBRs. In this study, vanillin was applied to investigate reduction of biofouling in MBRs. MBR sludge was analyzed to contain QS signal molecules by cross-feeding biosensor assay and HPLC. In addition, the inhibitory activity of vanillin against bacterial quorum sensing was verified using an indicator strain CV026. The vanillin doses greater than 125 mg/L to 100 mL of MBR sludge showed 25% reduction of biofilm formed on the membrane surfaces. Two MBRs, i.e., a typical MBR as a control and an MBR with vanillin, were operated. The TMP increases of the control MBR were more rapid compared to those of the MBR with the vanillin dose of 250 mg/L. The treatment efficiencies of the two MBRs on organic removal and MLSS were maintained relatively constant. Extracellular polymeric substance concentrations measured at the end of the MBR operation were 173 mg/g biocake for the control MBR and 119 mg/g biocake for the MBR with vanillin. Vanillin shows great potential as an anti-biofouling agent for MBRs without any interference on microbial activity for wastewater treatment.

RESEARCH PAPERS : THE KINETICS ON THE BIOLOGICAL REACTION IN MEMBRANE BIOREACTOR (MBR) WITH GRAVITATIONAL AND TRANSVERSAL FILTRATION

  • Jang, Nam-J.;Hwang, Moon-H.;Yeo, Young-H.;Shim, Wang-G.;S. Vigneswaran;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.9 no.5
    • /
    • pp.238-247
    • /
    • 2004
  • The objective of this study was to develop kinetic model for the MBR and investigate kinetic characteristics of the gravitational flow transverse direction MBR system. Kinetic model was derived by mass balance of substratc and biomass combined with empirical membranc filtration rerm for the MBR. To find kinctic values, permeale flux and COD removal were analyzed through the laboratory, MBR operation as different solids retention times. Permeate flux was ranged 2.5-5.0 LMH (L/m$^2$/hr) as sludge characteristics in each run. Although the soluble COD in the bioreactor was changed, the effluent COD was stable as average 99% removal rate during the experimental periods. Y$_g$ of this MBR system was higher than those of cross-flow MBR processes. The kinetics of this MBR showed that smaller k, larger b, and larger K$_s$ values than the conventional activated sludge process. These results indicated that substrate was used for cell maintenance rather than growth in this MBR system.

An Efficient Spatial Index Structure for Main Memory (메인 메모리를 위한 효율적인 공간 인덱스 구조)

  • Lee, Ki-Young;Lim, Myung-Jae;Kang, Jeong-Jin;Kim, Joung-Joon
    • The Journal of The Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2009
  • Recently there is growing interest in LBS requiring real-time services and the spatial main memory DBMS for efficient Telematics services. In order to optimize existing disk-based spatial indexes of the spatial main memory DBMS in the main memory, spatial index structures have been proposed, which minimize failures in cache access by reducing the entry size. However, because the reduction of entry size requires compression based on the MBR of the parent node or the removal of redundant MBR, the cost of MBR reconstruction increases in index update and the efficiency of search is lowered in index search. Thus, to reduce the cost of MBR reconstruction, this paper proposed the RSMB (relative-sized MBR)compression technique, which applies the base point of compression differently in case of broad distribution and narrow distribution. In case of broad distribution, compression is made based on the left-bottom point of the extended MBR of the parent node, and in case of narrow distribution, the whole MBR is divided into cells of the same size and compression is made based on the left-bottom point of each cell. In addition, MBR was compressed using a relative coordinate and size to reduce the cost of search in index search. Lastly, we evaluated the performance of the proposed RSMBR compression technique using real data, and proved its superiority.

  • PDF

Application of MBR process for the treatment of RO concentrate from wastewater reuse process (하수재이용 공정에서 발생되는 RO농축수 처리를 위한 MBR 공정 적용)

  • Lee, Do-Hun;Jang, Hyun-Ji;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.3
    • /
    • pp.339-349
    • /
    • 2013
  • Biological treatment of RO concentrate from wastewater reuse process is known to be very difficult due to its high concentration of non-degradable organics and salt ions such as chloride, nitrate and phosphate. In this research, the treatment performance of MBR was examined using RO concentrate mixed with raw wastewater as the influent of MBR. Addition of PAC (powdered activated carbon) to MBR was also evaluated in order to enhance the treatment performance and stability. The performance of MBR for treating only RO concentrate decreased gradually although external carbon source was added. The average removal performance of MBR with and without PAC decreased from 99.1 %(98.8 %) to 94.9 %(91.4 %) for COD, 81.3 %(80.3 %) to 42.0 %(41.9 %) for T-N and 57.3(55.0 %) to 30.0 %(21.0 %) for T-P with the increase of RO concentrate mixing rate of 0 % to 20 % in the feed water. Addition of PAC showed positive effect on the performance of MBR for the removal of COD and phosphorus in case that the ratio of RO concentrate to feed water increased.

Performance and antifouling properties of PVDF/PVP and PSf membranes in MBR: A comparative study

  • Hazrati, Hossein;Karimi, Naser;Jafarzadeh, Yoones
    • Membrane Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • In this study, the performance and antifouling properties of polysulfone (PSf) and polyvinylidene fluoride/polyvinylpyrrolidone (PVDF/PVP) membranes in a membrane bioreactor (MBR) were investigated. The membranes were prepared via phase inversion method, and then characterized by a set of analyses including contact angle, porosity and water flux and applied in a lab-scale MBR system. Soluble microbial product (SMP), extracellular polymeric substance (EPS), FTIR, gel permission chromatography (GPC) and particle size distribution (PSD) analyses were also carried out for MBR system. The results showed that the MBR with PSf membrane had higher hydrophobic organic compounds which resulted in formation of larger flocs in MBR. However, in this MBR had high compressibility coefficient of cake layer was higher (n=0.91) compared to MBR with PVDF/PVP membrane (n=0.8); hence, the fouling was more profound. GPC analysis revealed that compounds with molecular weight lower than 2 kDa are more formed on PSf membrane more than PVDF/PVP membrane. The results of FTIR analysis confirmed the presence of polysaccharide and protein compounds on the cake layer of both membranes which was in good agreement with EPS analysis. In addition, the results showed that their concentration was higher for the cake on PSf membrane.

The Practical Study for the Treatment of Fish Processing Saline Wastewater Using Immersed MBR (iMBR 공정을 이용한 수산물가공폐수 처리에 관한 실증적 고찰)

  • Park, Seung Kyun;Lee, Dong Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.469-475
    • /
    • 2016
  • The study is the result of an practical operation analysis for the full scale fishery product wastewater treatment plant with immersed MBR (iMBR) process. Since fishery product industries show a wide range of wastewater generation by the season, design and operation of the equalization basin are very important factor. The aeration system for the equalization basin mixing can save the chemical consumption for followed system through the restriction of acid fermentation. The concentrations of wastewater primary DAF process treated were BOD 2,291 mg/L, $COD_{Mn}$ 530 mg/L, SS 256.8 mg/L, T-N 38 mg/L, T-P 13.5 mg/L respectively. It was considered that iMBR is the most efficient biological process for high salinity content wastewater since It is irrelevant to the capability of the sludge precipitation. SADp and SADm were 0.31, $26.5m^3/hr{\cdot}m^3$ respectively. In iMBR process, the critical F/M ratio was derived at 0.08~0.10 gBOD/gMLSS by analysing the correlations between MLSS, normalized TMP and temperature. The effluent concentrations were BOD 1.8 mg/L, $COD_{Mn}$ 12.4 mg/L, SS 1.0 mg/L, T-N 7.85 mg/L, T-P 0.1 mg/L and removal efficiencies were 99.9%, 97.6%, 96.3%, 95.7%, 97.8% respectively.