• Title, Summary, Keyword: MPPT control

Search Result 395, Processing Time 0.038 seconds

Optimum MPPT Control Period for Actual Insolation Condition (실제 일사량 조건에서의 최적 MPPT 제어주기)

  • Ryu, Danbi;Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Solar power generation systems require maximum power point tracking (MPPT) control to acquire maximum power using inefficient and high-cost PV modules. Most conventional MPPT algorithms are based on the slope-tracking concept. The perturb and observe (P&O) algorithm is a typical slope-tracking method. The two factors that determine the MPPT performance of P&O algorithm are the MPPT control period and the magnitude of the perturbation voltage. The MPPT controller quickly moves to the new maximum power point at insolation change when the perturbation voltage is set to large, and the error of output power will be huge in the steady state even when insolation is not changing. The dynamics of the MPPT controller can be accelerated even though the perturbation voltage is set to small when the MPPT control period is set to short. However, too short MPPT control period does not improve MPPT performance but consumes the MPPT controller resources. Therefore, analyzing the performance of the MPPT controller is necessary for actual insolation conditions in real weather environment to determine the optimum MPPT control period and the magnitude of the perturbation voltage. This study proposes an optimum MPPT control period that maximizes MPPT efficiency by measuring and analyzing actual insolation profiles in typical clear and cloudy weather in central Korea.

Comparative characteristics of the PV system according to the MPPT control Method (MPPT 제어기법에 따른 PV 시스템의 특성 비교)

  • Seo, Tae-Young;Ko, Jae-Sub;Kang, Sung-Min;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.956-957
    • /
    • 2015
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

  • PDF

A Study on the MPPT Control Algorithm and Efficiency Evaluation Method (MPPT제어 알고리즘 고찰 및 효율시험 평가법)

  • 유권종;김기현;정영석;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.164-172
    • /
    • 2001
  • This paper describes common MPPT(Maximum Power Point Tracking) control algorithm; Constant Voltage Control, P&O(Perturbation and Observation), IncCond(Incremental Conductance), and investigated it\`s efficiency. Though simulation and efficiency evaluation, the steady/transient states characteristics and efficiency of control algorithms are analyzed respectively. Also, two-mode MPPT control to improve on the existing control algorithm. Moreover, is proposed for high efficiency this paper suggests a topology for MPPT measuring efficiency and a method of examination.

  • PDF

Optimum MPPT Control Period for PV Panel based on Real Insolation Profile (실제 일사프로파일에 근거한 PV 패널의 최적 MPPT 제어주기)

  • Ryu, Danbi;Kim, Yong-Jung;Jeong, Woo-Yong;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.123-125
    • /
    • 2018
  • 태양광발전시스템은 낮은 효율의 PV 패널을 사용하여 최대의 전력을 생산하기 위해 PV 패널의 최대전력점에서 운전하는 MPPT(Maximum Power Point Tracking) 제어가 반드시 필요하다. 기존의 MPPT 알고리즘은 대부분 경사법에 기초하고 있으며 그 중 대표적인 방법이 P&O(Perturb and Observe) 알고리즘이다. P&O 알고리즘의 MPPT 성능을 좌우하는 두 가지 인수는 MPPT 제어주기와 변량전압의 크기이다. MPPT 제어기의 빠른 동특성과 극대화된 효율을 위한 최적의 MPPT 제어주기와 변량전압의 크기를 결정하기 위해서는 실제 날씨 환경에서 다양한 일사량 프로파일 패턴에 대한 MPPT 제어기의 성능분석이 필수적이다. 본 논문에서는 대한민국 중부지역의 전형적인 맑은 날씨와 흐린 날씨에서 실제 일사량을 측정하고, 취득한 일사량데이터를 기초로 저자가 개발한 다이오드 등가모델을 적용하여 시뮬레이션을 수행하였다. 이를 기반으로 MPPT 제어주기의 설정값에 따른 PV 패널의 전력생산량을 예측하여 MPPT 목표 효율을 극대화할 수 있는 최적의 MPPT 제어주기를 제시한다.

  • PDF

The MPPT Control oh Photovoltaic System using FVSS-PO Method (FVSS-PO를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.20-26
    • /
    • 2013
  • This paper proposes the maximum power point tracking(MPPT) control of photovoltaic system using fuzzy based variable step size perturbation & observation(FVSS-PO) method. Conventional PO and incremental conductance(IC)MPPT control algorithm generally uses fixed step size. A small fixed step size will cause the tracking speed to decrease and tracking accuracy of the MPP will decrease due to large fixed step size. Therefore, the fixed step size can't be satisfying both the tracking speed and the tracking accuracy. This paper proposes FVSS-PO MPPT algorithm that adjusts automatically step size of PO by fuzzy control according to operating conditions. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO MPPT algorithm.

Analysis on MPPT Scan Period for Real Life Environment (실제 날씨 환경에 대한 MPPT 주기 분석)

  • Kim, Yong-Jung;Ryu, Danbi;Na, Jaeho;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.294-295
    • /
    • 2017
  • 태양광발전시스템은 설비 사용률을 최대화하기 위하여 PV 모듈을 최대 전력점에서 운전하는 MPPT(Maximum Power Point Tracking) 제어가 반드시 필요하다. 기존의 MPPT 알고리즘은 경사법에 기반을 두기 때문에 일정한 MPPT 주기마다 일정한 크기의 PWM Duty 비의 자극을 주고, 그에 따른 출력 전력의 변화를 감지하여 최대 전력점을 향한 다음 운전점을 찾는다. 이러한 MPPT 알고리즘을 실제 날씨 환경에 적용할 때 최대전력을 생산하기 위한 최적의 MPPT 주기와 PWM Duty 비의 변량은 다양한 일사량의 프로파일 형태에 따라 달라진다. 그러므로 최적의 MPPT 주기와 PWM Duty 비의 변량을 결정하기 위해서는 실제 날씨 환경에서 다양한 일사량 프로파일의 패턴에 대한 분석이 필수적이다. 본 논문에서는 대한민국 중부지역의 전형적인 맑은 날씨와 흐린 날씨에서 실제 일사량을 측정, 분석하여 MPPT 목표 효율을 최대화할 수 있는 MPPT 주기를 제시하였다.

  • PDF

The MPPT Control of Photovoltaic System using the Fuzzy PI Controller (퍼지 PI 제어기를 이용한 태양광 발전시스템의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.9-18
    • /
    • 2014
  • This paper proposes the fuzzy PI controller for maximum power point tracking(MPPT) control of photovoltaic system. The output characteristics of the solar cell are a nonlinear and affected by a temperature, the solar radiation. The MPPT control is a very important technique in order to increase an output and efficiency of the photovoltaic system. The conventional perturbation and observation(PO) and incremental conductance(IC) are the method which finding maximum power point(MPP) by the continued self-excitation vibration, and uses the fixed step size. If the fixed step size is a large, the tracking speed of maximum power point is faster, but the tracking accuracy in the steady state is decreased. On the contrary, when the fixed step size is a small, the tracking accuracy is increased and the tracking speed is slower. Therefore, this paper proposes the MPPT control using the fuzzy PI controller that can be improve a MPPT control performance. The fuzzy PI controller is adjusted a input of PI controller by fuzzy control and compensated a cumulative error of fuzzy control by PI controller. The fuzzy PI MPPT control is compared to conventional PO and IC MPPT method for various temperature and radiation condition. This paper proves the validity of the fuzzy PI controller using these results.

MPPT Control of Photovoltaic using VS-PO Method (VS-PO 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.45-53
    • /
    • 2015
  • A I-V and P-V characteristic of solar cell is changed to nonlinear by radiation and temperature. Therefore, to use efficiently PV system, operating point of PV system is must operate at maximum power point always. A performance of conventional the PO and the IC method is depend on the step size. So it has weakness which is must select optimal step size. Also, MPPT control applying PI and fuzzy control is not expected satisfactory performance, because of PI controller has fixed gain and fuzzy control has cumulative error by an integral calculus. Therefore, this paper proposes the VS-PO(Variable Stepsize - Perturbation & Observation) MPPT control that is automatically adjusted the step size according to the operating conditions. The VS-PO MPPT method proposed in this paper analyzes control characteristic about condition of radiation and compares with conventional methods. The validity of this paper proves using this results.

Unified MPPT Control Strategy for Z-Source Inverter Based Photovoltaic Power Conversion Systems

  • Thangaprakash, Sengodan
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.172-180
    • /
    • 2012
  • Z-source inverters (ZSI) are used to realize both DC voltage boost and DC-AC inversion in single stage with a reduced number of power switching devices. A traditional MPPT control algorithm provides a shoot-through interval which should be inserted in the switching waveforms of the inverter to output the maximum power to the Z-network. At this instant, the voltage across the Z-source capacitor is equal to the output voltage of a PV array at the maximum power point (MPP). The control of the Z-source capacitor voltage beyond the MPP voltage of a PV array is not facilitated in traditional MPPT algorithms. This paper presents a unified MPPT control algorithm to simultaneously achieve MPPT as well as Z-source capacitor voltage control. Development and implementation of the proposed algorithm and a comparison with traditional results are discussed. The effectiveness of the proposed unified MPPT control strategy is implemented in Matlab/Simulink software and verified by experimental results.

The MPPT Control of a Small Wind Power Generation System by Adjusting the DC-Link Voltage of a Grid-connected Inverter (계통 연계형 인버터의 DC-Link 전압 가변을 통한 소형 풍력발전 시스템의 MPPT 제어)

  • Park, Min-Gi;Lee, Joon-Min;Hong, Ju-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1402-1411
    • /
    • 2014
  • In this paper, the Maximum Power Point Tracking(MPPT) control of the small scale wind power generation system with a three-phase diode rectifier and the grid-connected inverter is studied. Without the need for the converter circuits to control speed of the generator, it is economical and the structure is simple. Compared with existing systems, it can be to reduce the power semiconductor switches and passive elements, and to implement the MPPT control with only DC-Link voltage control of the grid-connected inverter. In order to allow MPPT control without the characteristic information of the wind turbine, the P&O algorithm is applied, and these are verified by the simulation and experiment.