• Title/Summary/Keyword: MPTP

Search Result 66, Processing Time 0.117 seconds

Anti-inflammatory Effect of Bee Venom Acupuncture at Sinsu($BL_{23}$) in a MPTP Mouse Model of Parkinson Disease (MPTP 유발 파킨슨 병 동물 모델에서의 신수혈($BL_{23}$) 봉독약침의 항염증 효과)

  • Kim, Chan-Young;Lee, Jae-Dong;Lee, Sang-Hoon;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.26 no.4
    • /
    • pp.49-58
    • /
    • 2009
  • 목적 : 파킨슨 병은 기저핵 흑질의 치밀부에서 도파민성 신경세포의 퇴행으로 인하여 발생하는 질병으로 신경 염증이 주요 병인으로 밝혀져 있다. 이 연구는 MPTP 유발 파킨슨 병 동물 모델에서 신수혈($BL_{23}$)에 대한 봉독 약침의 항염증 효과 및 그 기전을 확인하기 위해 시행되었다. 방법 : $C57_{BL}$/6쥐를 무처치군, MPTP+saline군, MPTP+BVA(0.06mg/kg)군, MPTP+BVA(0.6mg/kg)군의 4군으로 나눈 뒤 무처치군을 제외한 모든 그룹에 총 8시간 동안 2시간 간격으로 MPTP-HCl(20mg/kg per dose$\times$4)을 복강내로 주입하였다. MPTP+BVA 군에서 봉독약침은 마지막 MPTP 주입 2시간 후부터 48시간 간격으로 신수혈($BL_{23}$)에 양측으로 각 20${\mu}\ell$씩 주입하였고 MPTP+saline군에서는 봉독약침 대신 Saline을 주입하였다. 마지막 MPTP 주입 후 7일째에 쥐의 뇌를 적출한 후 면역조직화학법을 시행하였다. 결과 : MPTP 유발 파킨슨 병 동물 모델에서 신수혈에 대한 봉독약침은 농도 의존적으로 TH-Immunoreactivity neuron의 감소와 microglial activation을 억제하였다. HSP70-IR neuron은 모든 군에서 나타나지 않았다. 결론 : 봉독약침이 용량의존적으로 microglial activation을 억제하는 효과를 통해 도파민성 신경세포의 파괴를 억제함으로써 항염 효과를 나타냄을 알 수 있었다. 이 결과는 봉독약침이 microglial activation 억제를 통해 임상적으로 파킨슨 병과 같은 신경 퇴행성 질병에 있어 유용한 치료수단이 될 수 있음을 시사한다.

  • PDF

The effect of endurance exercise and MitoQ intake on pathological characteristics in MPTP-induced animal model of Parkinson's disease (지구성 운동과 MitoQ 섭취가 MPTP로 유도된 파킨슨 질환 생쥐의 병리학적 특징에 미치는 영향)

  • Kim, Dong-Cheol;Um, Hyun Seob;Oh, Eun-Tak;Cho, Joon-Yong;Jang, Yongchul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.744-754
    • /
    • 2020
  • We investigated the whether endurance exercise and MitoQ intake mediated neuroprotection are associated with mitochondrial function in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine(MPTP) -induced mice model of Parkinson's disease. C57BL/6 male mice were randomly assigned to five groups: Normal Conrol(NC, n=10), MPTP Control(MC, n=10), MPTP +MitoQ(MQ, n=10), MPTP + Exercise(ME, n=10) and MPTP + MitoQ + Exercise(MQE, n=10). Exercise intervention groups performed the treadmill exercise for 5days/week for 5 weeks with gradual increase of intensity. MitoQ intake groups consumed the MitoQ at a concentration of 250μmol by dissolving with water during experiment period. Our data demonstrated that ME and MQE group restored MPTP-induced motor dysfunction. In addition, treatment groups(MQ, ME and MQE) increased tyrosine hydroxylase levels, and suppressed the accumulation of α-synuclein levels. Futhermore, treatment groups modulated the mitochondrial function such as upregulated mitochondrial biogenesis, increased antioxidant enzyme, enhanced a anti-apoptotic protein(e.g., BCL2), and reduced a pro-apoptotic protein(e.g., BAX). Taken together, these results suggested that endurance exercise and MitoQ intake-mediated increase in mitochondrial function contributes to improvement of aggravated dopaminergic neuronal, resulting in attenuation of motor function of Parkinson's disease.

Acupuncture at GB34 modulates laminin expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine를 이용한 파킨슨병 생쥐 모델에서의 laminin 발현에 대한 양릉천 자침의 조절효과)

  • Kim, Youn-Jung;Kim, Bum-Shik;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.25 no.1
    • /
    • pp.155-164
    • /
    • 2008
  • 목 적 : 본 연구의 목적은 양릉천 침 처치 시 C57BL/6 생쥐의 중뇌 흑질에 위치한 도파민성 신경세포 사멸 억제 효과를 조직화학 염색법을 이용하여 Tyrosine hydroxylase(TH)와 laminin의 발현으로 관찰하고자 한다. 실험방법 : 실험에 이용한 동물은 C57BL/6 생쥐로, 매일 25mg/kg의 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)를 5일간 주사하였고, 매일 MPTP 주사한 뒤 2시간 후에 양릉천에 침치료를 시행하였으며 MPTP 주사를 종료한 뒤 침치료는 7일동안 계속 시행하였다. 마지막 MPTP 주사 7일 후에 동물을 희생하여 뇌를 적출하고 고정하였다. 침효과를 확인하기 위해 Thyrosine hydroxylase(TH), laminin의 발현 변화 정도를 조직염색화학법으로 이용하여 확인하였다. 각 그룹간의 유의성 검증은 one-way ANOVA를 이용하였다. 결 과 : 도파민성 신경세포 선택적인 신경독소인 MPTP에 대한 양릉천 침처치에 의한 신경보호 효과를 도파민신경세포의 표지자인 TH 발현을 면역화학조직염색법으로 관찰하였다. 대조군에 비해 MPTP 처치 군의 신경세포 사멸이 유의적으로 감소하였고(P <0.05), MPTP + 침처치 군에서 증가되는 양상을 확인하였다 (P <0.05). 또한 도파민성 신경세포내에 존재하는 laminin의 발현정도 역시 대조군보다 MPTP 처치 군에서 유의적으로 감소하였고, MPTP + 침처치 군에서 증가되는 양상을 확인하였다 (P <0.05). 결 론 : MPTP에 의한 도파민성 신경세포 손상에 대한 양릉천 침처치의 신경보호 효과는 세포외 기질중의 하나인 laminin의 발현 정도를 조절하여 비롯되는 것으로 사료된다.

  • PDF

Effect of Selenium Yeast on MPTP (1-methyl-4-phenyl-propion-oxypiperidine)-Induced Neurotoxicity in Mice (Selenium이 MPTP(1-methy-4-phenyl-1,2,3,6-tetrahydropyridine)에 의해 유도된 생쥐의 신경독성에 미치는 영향)

  • Kim Seck-Hwan;Lee Joo-Yeon;Kim Yeo-Jeong;Kang Hye-Ok;Lee Hang-Woo;Choi Jong-Won
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.266-273
    • /
    • 2006
  • This study is investigated the effect of selenium against neurotoxicity induced by MPTP(1-methy-4-phenyl-propion-oxypiperidine) in mice. In order to demonstrate neuroprotective activity of selenium, mice were administrated orally with selenium(25, 50, 100 ${\mu}g/kg$, once/day) for 10 days, and MPTP(10 mg/kg) was injected subcutaneously into the mice for 6 days from the beginning 1hr before selenium treatment. Test of rota road activity was inhibited by treatment with selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. Monoamine oxidase(MAO)-B activity and cerebral lipid peroxide content were significantly decreased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice and MAO-A was not affected. Activities of cerebral superoxide dismutase, catalase and glutathione peroxidase were significantly increased in the treatment of selenium in MPTP-induced neurotoxicity group when compared to MPTP treatment group in normal mice. These results suggest that selenium might be estimated the result from the cooperative action of its inhibitory effect on monoamine oxidase-B with that of the enhancement of antioxidant(SOD, catalase, GSH-Px) defence ability.

Effect of Cigarette Smoke Exposure on MPTP Metabolism in the Liver of Mice

  • Heung Bin Lim;Ja Young Moon;Hyung Ok Sohn;Young Gu Lee;Dong Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Numerous studies have demonstrated a negative association between cigarette smoking and Parkinson's disease. The present study was undertaken to investigate whether chronic exposure of mice to cigarette smoke a(footed the metabolism of 1-methyl-1113,6-tetrahydro-pyridine (MPTP) by cytochrome P4SO (P-450) or flavin-containing monooxygenase (FMO) in the hepatic microsomes of C57BL6/J mice. Adult male C57BL6/J mice were exposed to mainstream smoke generated from 15 cigarettes for 10 min a day and 5 day per week for 6 weeks. MPTP (10 mg/kg body weight) was administered to mice by subcutaneous injection for 6 consecutive days. Microsolnal P-450 content was increased by MPTP, smoke exposure, or both, but NADPH cytochrome P-450 reductase activity was rather decreased by the same treatments. The activities of benzo(a)pyrene hydroxylase, 7-ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase were significantly increased by the exposure of cigarette smoke, but were not or little affected by MPTP treatment. Benzphetamine N-demethylase activity was not affected either by MPTP treatment or by cigarette smoke exposure, but it was significantly increased by the combined MPTP treatment with cigarette smoke exposure, showing their synergic effect for the induction of the enzyme activity. Interestingly, in vitro studies of hepatic FMO and P-450 system both O-oxygenation and N-demethylation of MPTP were increased in the smoke-exposed or in the MPTP-treated mice. These results suggest that the enhancement in the N-demethylation as well as O-deethylation of P-450 system and in the N-oxygenation of FMO activity by cigarette smoke exposure in mouse liver may contribute to attenuating the neurotoxic effects of MPTP on the nigrostriatal dopaminergic neurons.

  • PDF

흰쥐 태아 중뇌 배양세포에서 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine의 독성: 2',7',-Dichlorofluorescin diacetate를 이용한 연구

  • 김율아;조용준;김용식;김영희
    • Toxicological Research
    • /
    • v.9 no.2
    • /
    • pp.217-224
    • /
    • 1993
  • 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a well-known dopamine neuron-specific toxin. But the involvement of oxidative damage in the pathogenesis of MPTP-induced parkinsonism is still uncertain. In this study, by using 2',7',-dichlorofluorescin diacetate(DCFH-DA) that detects intracellular oxidative processes, the effect of MPTP on dichlorofluorescein fluorescence in dissociated cells from fetal rat mesencephalon in culture was investigated. At 7th day in culture, cells were loaded with DCFH-DA, and exposed to 1 mM MPTP or MPP+. MPTP induced dichlorofluorescein-fluorescence which was peaked at 3 min and mostly faded away 30 min after MPTP treatment.

  • PDF

Effect of Cigarette Smoke Exposure on MPTP-Induced Neurotoxicity in Mice (흡연이 MPTP에 의해 유발되는 신경독성에 미치는 영향)

  • Heung-Bin Lim;Hyung-Ok Sohn;Young-Gu Lee;Dong-Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.2
    • /
    • pp.160-169
    • /
    • 1996
  • Effect of cigarette smoke exposure on 1-methyl-4-phpnyl-1,2,3,6-tetrahydro-pyidine (Mm)-induced neurotoxicity was investigated in C57BL6 mice. Cigarette smoke exposure of mice to the mainstream smoke generated from 15 cigarettes for 10 mins per day, 5 days per week, for fi weeks, effectively attenuated the decline both in the level of striatal dopamine and the number of brrosine hydros:ylase-positive ceils in the brain caused by MPTP treahent. Exposure to cigarette smoke significantly decreased monoamine oxidate B activity in the cerebral cortex and cerebellum. The activity of brain antioxidant enzymes such as catalase, glutathione peroxidase, and Cu, Zn-superoxide dismutase, was not changed by cigarette smoke exposure or MPTP treatment. Sulfhydryl compounds content in all brain regions except for the striatum was uniquely increased by MPTP treatment, however, such an effect of MPTP was not observed in mice exposed to cigarette smoke. These results suggest that cigarette smoke exposure inhibits MPTP-induced neurotoxicity without influencing free radical metabolism in the brain of mice. This protective effect of cigarette smoke seems to be closely related with the decreased activity of brain monoamine oxidase H. Key words : cigarette smoke exposure, dopamine, monoamine oxidase B, antioxidant enzywles, MPTP.

  • PDF

Neuroprotection of Dopaminergic Neurons by Hominis Placenta Herbal Acupuncture in in vitro and in vivo Models of Parkinson's Disease Induced by MPP+/MPTP Toxicity

  • Jun, Hyung Joon;Nam, Sang Soo;Kim, Young Suk
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 2015
  • Objectives : This study was designed to investigate the neuroprotective effects of Hominis-Placenta (HP)on dopaminergic neurons. Methods : We examined the effect of invitro administration of HP against 1-methyl-4-phenylpyridinium( MPP+)-induced dopaminergic cell loss in primary mesencephalic culture and also used behavioral tests and performed analysis in the striatum and the substantia nigra of mouse brain, to confirm the effect of HP on dopaminergic neurons in an invivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse model. Animals were assigned to four groups: (1) Group 1(vehicle-treatedgroup), (2) Group 2(MPTPonlytreated group), (3) Group 3(MPTP+ saline-treated/$ST_{36}$ group), and (4) Group 4(MPTP+HP-treated/$ST_{36}$ group). HP at $20{\mu}L$ of 48 mg/kg dose was injected at $ST_{36}$ for 4 weeks at 2-day intervals. MPTP in saline was injected intraperitoneally each day for 5 days from the $8_{th}$ treatment of HP. We performed the pole test and rota-rod test on the first and seventh day after the last MPTP injection. To investigate the effect of HP on dopaminergic neurons, we performed analysis in the striatum and the substantia nigra of mouse brain after treatment with HP and/or MPTP. Results : Treatment with HP had no influence on cell proliferation and caused no cell toxicity in $PC_{12}$ and $HT_{22}$ cells. Our study showed that HP significantly prevented cell loss and protected neurites against MPP+ toxicity. Although the invivo treatment of HP herbal acupuncture at $ST_{36}$ showed a tendency to improve movement ability and protected dopaminergic cells and fibers in the substantia nigra and the striatum, it did not show significant changes compared with the MPTP treated group. Conclusions : These data suggest that HP could be a potential treatment strategy in neurodegenerative diseases such as Parkinson's disease.

Neuroprotective Effect of PD-1 Extract in MPTP-lesioned Mouse Model of Parkinson's Disease (1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine으로 유도된 파킨슨병 쥐에서의 도파민 신경세포 손상에 대한 PD-1 처방의 보호 효과)

  • Lee, Jung-Wook;Jung, Hye-Mi;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.79-92
    • /
    • 2009
  • Objectives: The aim of the present study was to explore the neuroprotective effect and the possible mechanism of the PD-1 extracts on 1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine (MPTP)-lesioned C57BL/6 mouse model of Parkinson's disease (PD). Methods: The mice were supplemented (or not) with 50 or 100 mg/kg/day of PD-1 for 2 weeks, after which MPTP was injected intraperitoneally. We observed that daily administration of PD-1 prevented MPTP-induced depletion of striatal DA, and maintained striatal and nigral tyrosine hydroxylase (TH) protein levels. Results: Our results demonstrated that mice treated with PD-1 prior to MPTP administration showed more abundant TH-immunopositive (TH-ir) fibers and neurons than mice given only MPTP, indicating that PD-1 protects dopaminergic striatal fibers and nigral neurons from MPTP insults. Possible neuroprotective effect of PD-1 was further studied by the detection of antiapoptotic protein (bcl-2) and proapoptotic protein (Bax). In this assay, MPTP elevated the Bax protein and decreased the bcl-2 protein, while these expressions were prevented by PD-1 pre-treatment. Conclusions: The present results suggest that PD-1 is able to protect dopaminergic neurons from MPTP-induced neuronal injury with anti-apoptotic activity being one of the possible mechanisms.

  • PDF

Ameliorative Effects of NXP031 on MPTP-Induced Neurotoxicity (MPTP로 유도된 신경 독성에 대한 NXP031의 개선 효과)

  • Lee, Joo Hee;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effects of NXP031, an inhibitor of oxidation by specifically binding to the complex of DNA aptamer/vitamin C, on dopaminergic neurons loss and the reaction of microglia in an animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subchronic Parkinson's disease (PD). Methods: A subchronic PD mouse model was induced via an intraperitoneal (IP) injection of MPTP 30 mg/kg per day for five days. NXP031 (vitamin C/aptamer at 200 mg/4 mg/kg) and vitamin C at 200 mg/kg were administered via IP injections at one hour after performing MPTP injection. This process was performed for five days. Motor function was then evaluated with pole and rotarod tests, after which an immunohistochemical analysis was performed. Results: NXP031 administration after MPTP injection significantly improved motor functions (via both pole and rotarod tests) compared to the control (MPTP injection only) (p<.001). NXP031 alleviated the loss of dopaminergic neurons in the substantia nigra (SN) and striatum caused by MPTP injection. It was found to have a neuroprotective effect by reducing microglia activity. Conclusion: NXP031 can improve impaired motor function, showing neuroprotective effects on dopaminergic neurons in the SN and striatum of MPTP-induced subchronic Parkinson's disease mouse model. Results of this study suggest that NXP031 has potential in future treatments for PD and interventions for nerve recovery.