• Title, Summary, Keyword: MPTP-induced Parkinson model

Search Result 25, Processing Time 0.034 seconds

Neuroprotective Effects of Hyangsayangwi-tang in MPTP-induced Mouse Model of Parkinson's Disease (MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)로 유도된 Parkinson's Disease 동물 모델을 이용한 향사양위탕의 신경 세포 보호 효과)

  • Go, Ga-Yeon;Kim, Yun-Hee;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.26 no.2
    • /
    • pp.165-179
    • /
    • 2014
  • Objectives To evaluate the neuroprotective effects of Hyangsayangwi-tang (HY), a Korean traditional medicinal prescription in a Parkinson's disease mouse model. Methods Four groups(each of 10 mouse per group) were used in this study. The neuroprotective effect of HY was examined in a Parkinson's disease mouse model. C57BL/6 mouse treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30mg/kg/day), intraperitoneal (i.p.) for 5 days. Slow behavioral responses and memory disorder is the major clinical symptoms of PD. In order to investigate the effect of HY on recovery of behavioral deficits and memory, we examined the motor function and memory by using Morris water maze and Forced swimming test. Ischemic mouse brain stained with TTC(2,3,5 triphenyl tetrazolium chloride) in the MPTP-induced Parkinson's disease to find out ischemia and tissue damage in mouse. The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of neurotransmitters in MPTP-HY group. To measure the amount of dopamine in mice brain, striatum-substantia nigra, was examined by Bradford assay. Immunohistochemistry was examined in the MPTP-induced Parkinson's disease (PD) mouse to evaluate the neuroprotective effects of Hyangsayangwi-tang on hippocampal lesion, ST and SNpc. Results and Conclusions Hyangsayangwi-tang (HY) prevents MPTP-induced loss of serotonin, hippocampus and TH-ir cell.

Neuroprotective effects of Sohaphwangwon essential oil in a Parkinson's disease mouse model (MPTP로 유도된 Parkinson's disease 동물 모델을 이용한 소합향원(蘇合香元)의 신경보호 효과 및 그 작용 기전 연구)

  • Kim, In-Ja;Lee, Ji-Hyun;Song, Kyoo-Ju;Koo, Byung-Soo;Kim, Geun-Woo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.1
    • /
    • pp.129-143
    • /
    • 2012
  • Objectives : To evaluate the neuroprotective effects of the essential oil from Sohaphwangwon (SH), a Chinese traditional medicinal prescription in a Parkinson's disease mouse model. Methods : 1. The neuroprotective effect of SH on primary neuronal cells was examined by using 1-methyl-4-phenylpyridinium ion (MPP+). 2. The neuroprotective effect of SH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. SH inhalation was applied before MPTP treatment for 7 days and continued until 12 days after the first MPTP treatment. 3. To find out the intracellular target signal molecule(s) regarding the neuroprotective effect of SH essential oil, brain-derived neurotropic factor (BDNF) and synaptic protein SNAP25 were examined by Western blot analysis. Results : 1. MPP+ induced a concentration-dependent decrease in cell viability. However, in the presence of 3 and 5 ug/ml of SH, MPP+-induced cell death was significantly reduced. 2. SH inhalation in MPTP mice led to the restoration of behavioral impairment and rescued tyrosine hydroxylase (TH)-positive dopaminergic neurodegeneration. 3. In SH / MPTP mice, BDNF and SNAP25 increased. Conclusions : This experiment suggests that the neuroprotective effect of SH essential oil is mediated by the expression of BDNF. Furthermore, SH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

Neuroprotective Effect of β-Lapachone in MPTP-Induced Parkinson's Disease Mouse Model: Involvement of Astroglial p-AMPK/Nrf2/HO-1 Signaling Pathways

  • Park, Jin-Sun;Leem, Yea-Hyun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.178-184
    • /
    • 2019
  • Parkinson's disease is a neurodegenerative disease characterized by the progressive loss of dopaminergic neurons within the substantia nigra pars compacta. In the present study, we investigated whether ${\beta}-Lapachone$ (${\beta}-LAP$), a natural naphthoquinone compound isolated from the lapacho tree (Tabebuia avellanedae), elicits neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. ${\beta}-LAP$ reduced the tyrosine hydroxylase (TH)-immunoreactive fiber loss induced by MPTP in the dorsolateral striatum, and alleviated motor dysfunction as determined by the rotarod test. In addition, ${\beta}-LAP$ protected against MPTP-induced loss of TH positive neurons, and upregulated B-cell lymphoma 2 protein (Bcl-2) expression in the substantia nigra. Based on previous reports on the neuroprotective role of nuclear factor-E2-related factor-2 (Nrf2) in neurodegenerative diseases, we investigated whether ${\beta}-LAP$ induces upregulation of the Nrf2-hemeoxygenae-1 (HO-1) signaling pathway molecules in MPTP-injected mouse brains. Western blot and immunohistochemical analyses indicated that ${\beta}-LAP$ increased HO-1 expression in glial fibrillary acidic protein-positive astrocytes. Moreover, ${\beta}-LAP$ increased the nuclear translocation and DNA binding activity of Nrf2, and the phosphorylation of upstream adenosine monophosphate-activated protein kinase (AMPK). ${\beta}-LAP$ also increased the localization of p-AMPK and Nrf2 in astrocytes. Collectively, our data suggest that ${\beta}-LAP$ exerts neuroprotective effect in MPTP-injected mice by upregulating the p-AMPK/Nrf2/HO-1 signaling pathways in astrocytes.

Neuroprotective Effect of PD-1 Extract in MPTP-lesioned Mouse Model of Parkinson's Disease (1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine으로 유도된 파킨슨병 쥐에서의 도파민 신경세포 손상에 대한 PD-1 처방의 보호 효과)

  • Lee, Jung-Wook;Jung, Hye-Mi;Seo, Un-Kyo
    • The Journal of Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.79-92
    • /
    • 2009
  • Objectives: The aim of the present study was to explore the neuroprotective effect and the possible mechanism of the PD-1 extracts on 1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine (MPTP)-lesioned C57BL/6 mouse model of Parkinson's disease (PD). Methods: The mice were supplemented (or not) with 50 or 100 mg/kg/day of PD-1 for 2 weeks, after which MPTP was injected intraperitoneally. We observed that daily administration of PD-1 prevented MPTP-induced depletion of striatal DA, and maintained striatal and nigral tyrosine hydroxylase (TH) protein levels. Results: Our results demonstrated that mice treated with PD-1 prior to MPTP administration showed more abundant TH-immunopositive (TH-ir) fibers and neurons than mice given only MPTP, indicating that PD-1 protects dopaminergic striatal fibers and nigral neurons from MPTP insults. Possible neuroprotective effect of PD-1 was further studied by the detection of antiapoptotic protein (bcl-2) and proapoptotic protein (Bax). In this assay, MPTP elevated the Bax protein and decreased the bcl-2 protein, while these expressions were prevented by PD-1 pre-treatment. Conclusions: The present results suggest that PD-1 is able to protect dopaminergic neurons from MPTP-induced neuronal injury with anti-apoptotic activity being one of the possible mechanisms.

  • PDF

Neuroprotection of Dopaminergic Neurons by Hominis Placenta Herbal Acupuncture in in vitro and in vivo Models of Parkinson's Disease Induced by MPP+/MPTP Toxicity

  • Jun, Hyung Joon;Nam, Sang Soo;Kim, Young Suk
    • Journal of Acupuncture Research
    • /
    • v.32 no.1
    • /
    • pp.23-36
    • /
    • 2015
  • Objectives : This study was designed to investigate the neuroprotective effects of Hominis-Placenta (HP)on dopaminergic neurons. Methods : We examined the effect of invitro administration of HP against 1-methyl-4-phenylpyridinium( MPP+)-induced dopaminergic cell loss in primary mesencephalic culture and also used behavioral tests and performed analysis in the striatum and the substantia nigra of mouse brain, to confirm the effect of HP on dopaminergic neurons in an invivo 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mouse model. Animals were assigned to four groups: (1) Group 1(vehicle-treatedgroup), (2) Group 2(MPTPonlytreated group), (3) Group 3(MPTP+ saline-treated/$ST_{36}$ group), and (4) Group 4(MPTP+HP-treated/$ST_{36}$ group). HP at $20{\mu}L$ of 48 mg/kg dose was injected at $ST_{36}$ for 4 weeks at 2-day intervals. MPTP in saline was injected intraperitoneally each day for 5 days from the $8_{th}$ treatment of HP. We performed the pole test and rota-rod test on the first and seventh day after the last MPTP injection. To investigate the effect of HP on dopaminergic neurons, we performed analysis in the striatum and the substantia nigra of mouse brain after treatment with HP and/or MPTP. Results : Treatment with HP had no influence on cell proliferation and caused no cell toxicity in $PC_{12}$ and $HT_{22}$ cells. Our study showed that HP significantly prevented cell loss and protected neurites against MPP+ toxicity. Although the invivo treatment of HP herbal acupuncture at $ST_{36}$ showed a tendency to improve movement ability and protected dopaminergic cells and fibers in the substantia nigra and the striatum, it did not show significant changes compared with the MPTP treated group. Conclusions : These data suggest that HP could be a potential treatment strategy in neurodegenerative diseases such as Parkinson's disease.

Neuroprotective Effects of Modified Yuldahanso-tang (MYH) in a Parkinson's Disease Mouse Model (MPTP로 유도된 Parkinson's disease 동물 모델에서 열다한소탕 가감방 (MYH)의 신경 세포 보호 효과)

  • Go, Ga-Yeon;Kim, Yoon-Ha;Ahn, Taek-Won
    • Journal of Sasang Constitutional Medicine
    • /
    • v.27 no.2
    • /
    • pp.270-287
    • /
    • 2015
  • Objectives To evaluate the neuroprotective effects of modified Yuldahanso-tang (MYH) in a Parkinson's disease mouse model. Methods 1) Four groups (each of 8 rats per group) were used in this study. 2) The neuroprotective effect of MYH was examined in a Parkinson's disease mouse model. C57BL/6 mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg/day), intraperitoneal (i.p.) for 5 days. 3) The brains of 2 mice per group were removed and frozen at $-20^{\circ}C$, and the striatum-substantia nigra part was seperated. The protein volume was measured by Bradford method following Bio-Rad protein analyzing kit. Using mouse/Rat Dopamine ELISA Assay Kit. 4) The brains of 2 mice per group were separated and removed. TH-immunohistochemical was examined in the MPTP-induced Parkinson's disease mice to evaluate the neuroprotective effects of MYH on ST and SNpc. 5) Two mice out of each group were anesthetized and skulls were opened from occipital to frontal direction to take out the brains. The brains added TTC solution for 20 minutes for staining. 6) The water tank used for morris water maze test was filled with $28^{\circ}C$ water, and a round platform of 10cm in diameter was installed for mice to step on. The study was carried out once a day within 30 seconds, keep exercising to step on the platform in the pool. 7) The brains of two mice out of each group were fixed in 10% formaldehyde solution and paraphillin substance was infiltrated. They were fragmented by microtome, and observed under an optical microscope after Hematoxylin & Eosin staining. 8) A round acrylic cylinder with its upper side open was filled with clean water and depressive mouse models were forced to swim for 15 minutes. After 24 hours the animals were put in the same equipment for 5 minutes and were forced to swim. 9) The convenient, simple, and accurate high-performance liquid chromatography (HPLC) method was established for simultaneous determination of Neurotransmitters in MPTP-MYH group. Results 1) MYH possess Dopamine cell protective effect on MPTP-induced injury in striatum and substantia nigra pars compacta. 2) MYH inhibits the loss of tyrosine hydroxylase-immunoreacitive (TH-IR) cells in the striatum and substantia nigra pars compacta on MPTP-induced injury in C57BL/6 mice. 3) MYH possesses improvement effect on MPTP-induced memory deterioration in C57BL/6 mice through the reduction of prolongated Sort of lost time by MPTP injection using the Morris water maze test. 4) MYH possesses hippocampal neuron protective effect on MPTP-induced injury in C57BL/6 mice. 5) MYH possesses improvement effect on MPTP-induced motor behaviour deficits and depression in C57BL/6 mice through the reduction of prolongated losing motion by MPTP injection using the Forced swimming test. 6) MYH increases serotonin product amount on MPTP-induced injury in C57BL/6 mice. Conclusions This experiment suggests that the neuroprotective effect of MYH is mediated by the increase in Dopamin, TH-ir cell, Hippocampus and Serotonin. Furthermore, MYH essential oil may serve as a potential preventive or therapeutic agent regarding Parkinson's disease.

Korean Red Ginseng protects dopaminergic neurons by suppressing the cleavage of p35 to p25 in a Parkinson's disease mouse model

  • Jun, Ye Lee;Bae, Chang-Hwan;Kim, Dongsoo;Koo, Sungtae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • Background: Ginseng is known to have antiapoptotic, anti-inflammatory, and antioxidant effects. The present study investigated a possible role of Korean Red Ginseng (KRG) in suppressing dopaminergic neuronal cell death and the cleavage of p35 to p25 in the substantia nigra (SN) and striatum (ST) using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. Methods: Ten-week-old male C57BL/6 mice were injected intraperitoneally with 30 mg/kg of MPTP at 24-h intervals for 5 d, and then administered KRG (1 mg/kg, 10 mg/kg, or 100 mg/kg) once a day for 12 consecutive days from the first injection. Pole tests were performed to assess the motor function of the mice, dopaminergic neuronal survival in the SN and ST was evaluated using tyrosine hydroxylase-immunohistochemistry, and the expressions of cyclin-dependent kinase 5 (Cdk5), p35, and p25 in the SN and ST were measured using Western blotting. Results: MPTP administration caused behavioral impairment, dopaminergic neuronal death, increased Cdk5 and p25 expression, and decreased p35 expression in the nigrostriatal system of mice, whereas KRG dose-dependently alleviated these MPTP-induced changes. Conclusion: These results indicate that KRG can inhibit MPTP-induced dopaminergic neuronal death and suppress the cleavage of p35 to p25 in the SN and the ST, suggesting a possible role for KRG in the treatment of Parkinson's disease.

Proteomic change by Korean Red Ginseng in the substantia nigra of a Parkinson's disease mouse model

  • Kim, Dongsoo;Kwon, Sunoh;Jeon, Hyongjun;Ryu, Sun;Ha, Ki-Tae;Kim, Seungtae
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.429-435
    • /
    • 2018
  • Background: Recent studies have shown that Korean Red Ginseng (KRG) successfully protects against dopaminergic neuronal death in the nigrostriatal pathway of a Parkinson's disease (PD) mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration; however, the mechanism has yet to be identified. Therefore, in this study we used two-dimensional electrophoresis to investigate the effects of KRG on the changes in protein expression in the substantia nigra (SN) of MPTP-treated mice. Methods: Male C57BL/6 mice (9 wk old) were intraperitoneally administered MPTP (20 mg/kg) four times at 2-h intervals, after which KRG (100 mg/kg) was orally administered once a day for 5 d. Two hours after the fifth KRG administration, a pole test was conducted to evaluate motor function, after which the brains were immediately collected. Survival of dopaminergic neurons was measured by immunohistochemistry, and protein expression was measured by two-dimensional electrophoresis and Western blotting. Results: KRG alleviated MPTP-induced behavioral dysfunction and neuronal toxicity in the SN. Additionally, the expression of eight proteins related to neuronal formation and energy metabolism for survival were shown to have changed significantly in response to MPTP treatment or KRG administration. KRG alleviated the downregulated protein expression following MPTP administration, indicating that it may enhance neuronal development and survival in the SN of MPTP-treated mice. Conclusion: These findings indicate that KRG may have therapeutic potential for the treatment of patients with PD.

Neuroprotective Effects of Herbal Ethanol Extract from Gynostemma pentaphyllum on Dopamine Neurons in Rotenone- and MPTP-induced Animal Model of Parkinson's Disease (Rotenone- 및 MPTP-유도 파킨슨병 동물 모델에서 돌외 에탄올 추출물의 Dopamine 신경세포 보호작용)

  • Suh, Kwang Hoon;Choi, Hyun Sook;Shin, Kun Seong;Zhao, Ting Ting;Kim, Seung Hwan;Hwang, Bang Yeon;Lee, Chong Kil;Lee, Myung Koo
    • YAKHAK HOEJI
    • /
    • v.57 no.2
    • /
    • pp.77-86
    • /
    • 2013
  • The neuroprotective effects of herbal ethanol extract (GP-EX) from Gynostemma pentaphyllum on dopamine neurons in animal model of Parkinson's disease (PD) were investigated. Rats and mice were administered with rotenone (2.5 mg/kg) for 28 days and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg) for 5 days for the PD models, respectively and the animals were simultaneously treated with GP-EX (30 mg/kg, daily). After preparing the PD models, the animals were also administered with L-DOPA (10 mg/kg) for 14 days with or without GP-EX treatment. Treatment with GP-EX (30 mg/kg) inhibited the rotenone- and MPTP-induced neurotoxic effects in dopamine neurons of rats or mice, which was determined by the numbers of tyrosine hydroxylase-immunohistochemical staining survival cells, as well as the levels of dopamine, 3,4-dihydroxyphenylacetic acid and homovanillic acid. GP-EX (30 mg/kg) also showed the protective effects on neurotoxicity which was induced by long-term administration of L-DOPA (10 mg/kg) in rotenone- and MPTP-induced animal model of PD. The used doses of GP-EX (30 mg/kg) did not produce any signs of toxicity, such as weight loss, diarrhea, or vomiting, in rats and mice during the treatment periods. These results suggest that GP-EX has the protective functions against chronic L-DOPA-induced neurotoxic reactions in dopamine neurons of rotenone- and MPTP-induced animal model of PD. Therefore, the natural GP-EX may be beneficial in the prevention of PD progress and L-DOPA-induced neurotoxicity in PD patients.

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.