• Title, Summary, Keyword: Marek's disease

Search Result 33, Processing Time 0.05 seconds

A Review on Viral Lymphomagenesis (Lymphoid Leukosis and Marek's Disease) in the Domestic Fowl (닭의 Virus 임파종의 병리발생론 -임파성백혈병과 Marek병에 대한 연구개관-)

  • Kim Uh-Ho
    • Journal of the korean veterinary medical association
    • /
    • v.14 no.4
    • /
    • pp.239-252
    • /
    • 1978
  • Two diotinot lymphomatous diseases occur in the field in domestic fowl: Lymphoid leukosis, which is caused by an oncornavirus and Marek's disease, which is caused by a herpesvirus. They are the most common neoplastic diseases of the chicken, and Marek's d

  • PDF

Evolving Problem Analyses of Recent Marek's Disease (최근 진화하는 마렉병의 원인 분석)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.4
    • /
    • pp.301-318
    • /
    • 2007
  • Marek's disease (MD) is a highly contagious lymphoproliferative disease of poultry caused by the oncogenic herpesvirus designated Marek's disease virus (MDV). MD has a worldwide distribution and is thought to cause an annual loss over US$ one billion to the poultry industry. Originally described as a paralytic disease, today MD is mostly manifested as an acute disease with tumors in multiple visceral organs. MD is controlled essentially by the widespread use of live vaccines administered either in ovo into 18-day-old embryos or into chicks immediately after they hatch. In spite of the success of the vaccines in reducing the losses from the disease in the last 30 years, MDV strains have shown continuous evolution in virulence acquiring the ability to overcome the immune responses induced by the vaccines. During this period, different generations of MD vaccines have been introduced to protect birds from the increasingly virulent MDV strains. However, the virus will be countered each new vaccine strategy with ever more virulent strains. In spite of this concern, currently field problem from MD is likely to be controled by strategy of using bivalent vaccine. But, potential risk factors for outbreak of MD are still remained in this condition. The major factors can be thought that improper handling and incorrect administration of the vaccine, infection prior to establishment of immunity, suppression of immune system by environmental stress and outbreaks of more virulent MDV strain by using vaccine and genetic resistance of host.

Ocular Lesions Induced Experimentally by Very Virulent Strain of Marek′s Disease Virus in Chickens (닭의 마렉병 바이러스 강독주 실험접종에 의한 안구병변)

  • Cho, Kyoung-Oh
    • Korean Journal of Veterinary Pathology
    • /
    • v.5 no.2
    • /
    • pp.49-56
    • /
    • 2001
  • Ocular lesions induced in 40 specific-pathogen-free Marek's disease (MD) resistant chicks by inoculation at 1 day of age with very virulent strain of Marek's disease virus (WV) were pathologically examined. Grossly,24/40 (60%) chicks had white gel-like materials in the vitreous body, whereas thickening and discoloration of iris (gray eye) were not observed. Microscopically, characteristic ocular MD lesions were observed in choroid (27/40), ciliary (30/40) and iris (23/40) in which small focal inflammatory to diffuse neoplastic Iymphoid cells were infiltrated. Five out of 40 MDV-inoculated birds revealed necrotizing Iymphomas in choroid. These lesions consisted of necrotic and degenerating Iymphoblasts accompanied by intranuclear inclusion body. There was retinal atrophy and necrosis with inclusion body detected in necrotic ganglion, inner or outer nuclear and infiltrated Iymphoblast cells. Conjunctiva showed lymphoid cell infiltration in 29/40 chicks inoculated with MDV, Vitreous body exhibited mild to severe exudation of eosinophilic proteinaceous material in 24/40 chicks. These lesions were associated with Iymphoid cell infutration, edema and fibrosis of choroid. Pecten (7/40) and optic nerve (13/40) were infiltrated usually mildly with Iymphoid cells. From these results, very virulent strain, Md/5 of MDV caused high incidence of ocular lesions in MD resistant chicks. In addition, Md/5 induced exudation of proteinaceous material into the vitreous body and fibrosis of choroid. Necrotizing ocular Iymphoma lesions in choroid is the first report in the MD literature.

  • PDF

Differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis by polymeras chain reaction (중합효소연쇄반응을 이용한 닭 종양성 질병의 감별진단에 관한 연구)

  • Seong, Hwan-woo;Kim, Sun-jung
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • The present study attempted to apply polymerase chain reaction (PCR) to develop a rapid differential diagnosis among Marek's disease, reticuloendotheliosis and avian leukosis. The primers chosen to detect Marek's disease virus (MDV) flank the 132bp tandem direct repeat of the MDV genome. The primers selected for reticuloendotheliosis virus (REV) and avian leukosis virus (ALV) are based on proviral long terminal repeats of spleen necrosis virus and Rous-associated virus-2 genomes, respectively. The specific PCR products of MDV, REV and ALV were observed with each primer and the reaction was not cross-reacted among the viruses. MDV-specific DNA was also amplified from the MDV-induced lymphoma (MDCC-MSB1) but not from the REV-induced tumor and ALV-induced lymphoma (LSCC-1104B1). In addition, proviral DNA of REV from REV-induced tumor and proviral DNA of ALV from ALV-induced lymphoma were also amplified by REV-specific and ALV-specific PCRs, respectively. Therefore these three PCR methods may be used to rapidly differentiate among MDV, REV and ALV-associated tumors in diagnosis.

  • PDF

Immune Responses against Marek's Disease Virus Infection (마렉병 바이러스 감염에 대한 면역 반응)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.3
    • /
    • pp.225-240
    • /
    • 2008
  • Marek's disease virus(MDV) is a highly cell-associated, lymphotropic $\alpha$-herpesvirus that causes paralysis and neoplastic disease in chickens. The disease has been controlled by vaccination which was provided the first evidence for a malignant cancer being controlled by an antiviral vaccine. Marek's disease pathogenesis is complex, involving cytolytic and latent infection of lymphoid cells and oncogenic transformation of $CD4^+$ T cells in susceptible chickens. MDV targets a number of different cell types during its life cycle. Lymphocytes play an essential role, although within them virus production is restricted and only virion are produced. Innate and adaptive immune responses develop in response to infection, but infection of lymphocytes results in immunosuppressive effects. Hence in MDV-infected birds, MDV makes its host more vulnerable to tumour development as well as to other pathogens. All chickens are susceptible to MDV infection, and vaccination is essential to protect the susceptible host from developing clinical disease. Nevertheless, MDV infects and replicates in vaccinated chickens, with the challenge virus being shed from the feather-follicle epithelium. The outcome of infection with MDV depends on a complex interplay of factors involving the MDV pathotype and the host genotype. Host factors that influence the course of MD are predominantly the responses of the innate and adaptive immune systems, and these are modulated by: age at infection and maturity of the immune system; vaccination status; the sex of the host; and various physiological factors.

CELL CULTURE STUDIES OF MAREK'S DISEASE ETIOLOGICAL AGENT (조직배양(組織培養)에 의한 Marek 병(病) 병원체(病原體)의 연구(硏究))

  • Kim, Uh-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.9 no.1
    • /
    • pp.23-62
    • /
    • 1969
  • Throughout the studies the following experimental results were obtained and are summarized: 1. Multiplication of agents in primary cell cultures of both GF classical and CR-64 acute strain of Marek's disease infected chicken kidneys was accompanied by the formation of distinct transformed cell foci. This characteristic nature of cell transformation was passaged regularly by addition of dispersed cell from infected cultures to normal chicken kidney cell cultures, and also transferred was the nature of cell transformation to normal chick-embryo liver and neuroglial cell cultures. No cytopathic changes were noticed in inoculated chick-embryo fibroblast cultures. 2. The same cytopathic effects were noticed in normal kidney cell monolayers after the inoculation of whole blood and huffy coat cells derived from both forms of Marek's disease infected chickens. In these cases, however, the number of transformed cell foci appearing was far less than that of uninoculated monolayers prepared directly from the kidneys of Marek's disease infected chickens. 3. The change in cell culture IS regarded as a specific cell transformation focus induced by an oncogenic virus rather than it plaque in slowly progressing cytopathic effect by non-oncogenic viruses, and it is quite similar to RSV focus in chick-embryo fibroblasts in many respects. 4. The infective agent (cell transformable) were extremely cell-associated and could not be separated in an infective state from cells under the experimental conditions. 5. The focus assay of these agents was valid as shown by the high degree of linear correlation (r=0.97 and 0.99) between the relative infected cell concentration (in inoculum) and the transformed cell foci counted. 6. No differences were observed between the GF classical strain and the CR-64 acute strain of Marek's disease as far as cell culture behavior. 7. Characterization of the isolates by physical and chemical treatments, development of internuclear inclusions in Infected cells, and nucleic acid typing by differential stainings and cytochemical treatments indicated that the natures of these cell transformation agents closely resemble to those described fer the group B herpes viruses. 8. Susceptible chicks inoculated with infected kidney tissue culture cells developed specific lesions of Marek's disease, and in a case of prolonged observation after inoculation (5 weeks) the birds developed clinical symptoms and gross lesions of Marek's disease. Kidney cell cultures prepared from those inoculated birds and sacrificed showed a superior recovery of cell transformation property by formation of distinct foci. 9. Electron microscopic study of infected kidney culture cells (GF agent) by negative staining technique revealed virus particles furnishing the properties of herpes viruses. The particle was measured about $100m{\mu}$ and, so far, no herpes virus envelop has been seen from these preparations. 10. No relationship of both isolates to avian leukosis/sarcoma group viruses and PPLO was observed.

  • PDF

Immunohistochemical and Electron Microscopical Studies on the Initial Skin Lesions Induced Experimentally by Very Virulent Strain of Marek`s Disease Virus in Chickens (마렉병 바이러스 강독주의 실험 접종에 의해 유발된 닭의 초기 피부 병변에 대한 면역조직화학적 및 전자현미경적 연구)

  • 조경오
    • Journal of Veterinary Clinics
    • /
    • v.18 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • Immunohistochemical and Electron Microscopical Studies on the Initial Skin Lesions Induced Experimentally by Very Virulent Strain of Marek\`s Disease Virus in Chickens Marek\`s disease virus (MDV), which is an avian herpesvirus, causes malignant CD3+CD4+CD8-T cell lymphomas at many sites including visceral organs, muscles, peripheral nerves and skin. In the early skin lesions induced by MDV, corelationship between the translational activity of MDV early gene, pp38 and demonstration of MDV particles in the lymphoid cells are not well studied. Therefore, skin biopsies taken at weekly intervals for 2 weeks from the same specific-pathogen free chicknes inoculated with Md/5 MDV were examined immunohistochemically and electron microscopically. In the skin biopsies sampled at 1 week and 2 weeks post inoculation (PI), feather follicle epithelium (FFE) exhibited usually strong positive reaction for pp38, whereas only few lymphoblasts, which were infiltrated around FFE revealed positive reaction. Electron microscopically, small lymphocytes were detectable in the dermis and subcutaneous skin tissues sampled at 1 week PI. The number of small lymphocytes was increased and pleomorphic lymphoblasts, which were medium to large in size were scattered among the small lymphocytes at 2 weeks PI. Some of lymphoblasts revealed degenerative and necrotic changes. FFE contained a lot of MDV particles in the nucleus including mature and immature ones. Infrequently, immature virus particles were observed not only in the degenerative and necrotic lymphoblasts, but also rarely in the health lymphoblasts. From the present results, spontaneous MDV activation including translational activity of MDV pp38 gene and formation of MDV particles was occurred in the lymphoblasts of early MD skin lesions.

  • PDF

THE SUSCEPTIBILITY OF SCALELESS MUTANT CHICKENS TO VERY VIRULENT MAREK'S DISEASE VIRUS

  • Lin, J.A.;Liu Tai, J.J.;Lu, Y.S.;Liou, P.P.;Tai, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.6
    • /
    • pp.679-684
    • /
    • 1996
  • This study evaluates the susceptibility of scaleless mutant chickens to very virulent Marek's disease virus (vvMDV) inoculation. One day old chickens were inoculated subcutaneously with Taiwanese isolates of LTB-1 and LTS-1 strains, and standard strain of Md/5. Compared with the non-inoculated group the vvMDV-inoculated chickens showed decreased body weights and atrophy of lymphoid organs before 35 days old. These results indicate that scaleless chickens show the same susceptibility as the wild type chickens to vvMDV infection. Furthermore, the protective effect of herpesvirus of turkey (HVT) vaccination at 1 day old against vvMDV challenge was evaluated. Scaleless mutant chickens of treated groups showed 20-30% early death, and 85.7-100% and 12.5-14.2% had lymphomatous lesions in visceral organs and peripheral nerves, respectively. No significant lesions were observed in non-challenged chickens of the control group. The HVT vaccination did not provide an effective protection against vvMDV infection. It is concluded that scaleless mutant chickens are susceptible to vvMDV infection.