• Title/Summary/Keyword: Metal membrane

Search Result 24, Processing Time 0.084 seconds

Development of Backflow prevented Micropump (역류방지형 유리계 마이크로 펌프 개발)

  • Choi J. P.;Cho K. C.;Kim H. Y.;Kim B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents the design and fabrication of backflow prevented Micropump using the metal membrane. The Micropump is consisted of the lower plate, metal membrane, upper plate and the piezoelectric-element. The lower plate includes the micro channel and the inlet, outlet of the Micropump. The upper plate includes the micro channel and connects the piezoelectric-element. These plate are fabricated on the Pyrex glass wafer by sandblasting process. The metal membrane does roll of check valve that is prevented backflow of the Micropump. The metal membrane is fabricated on the stainless steel by laser machining. Piezoelectric-element is actuated the Micropump and controlled flowing of fluid. The Micropump is fabricated by bonding process of these multi-layer.

  • PDF

Fabrication of Functional Microfiltration TiO2 Metal Membrane Using Anodization (산화피막 형성 기술을 이용한 기능성 정밀여과형 TiO2 금속막 개발)

  • Choi, Seungpil;Kim, Geontae;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.33-39
    • /
    • 2010
  • A self-organized nano-structured, photocatalytic $TiO_2$ membrane with large surface area of anatase crystallites was successfully fabricated by anodization. The nano-structured anodized $TiO_2$ membrane was characterized using EDX, SEM and XRD techniques and the effect of electrolyte type and concentration to fabricate $TiO_2$ metal membrane was also investigated. Regular nano tubular arrays were obtained By the EDX, SEM and XRD patterns, the anodized $TiO_2$ membrane showed the enhanced photocatalytic properties of anatase phase. Photocatalytic activities of fabricated $TiO_2$ metal membrane was also experimentally investigated as model compound of humic acid.

Micro-Filtration Performance of Metal Membrane md Fouling Reduction by Intermittent Ozonation (금속 막의 정밀 여과 특성 및 간헐적 오존 처리에 의한 막 오염 저감)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.66-74
    • /
    • 2004
  • Total resistance of membrane in a micro-filtration system using a metal membrane was mainly attributed to the permeate resistance of cake layer($R_c$), which was formed by deposited particles from the physico-chemical interactions of solids on membrane surface. Intermittent back ozonation was highly effective than the air backwashing for fouling reduction. As far the operational effect, under same ozone injection, the increase of gas flow-rate was more favorable than the increase of injection time far the recovery of permeation flux. As the filtration time was longer, the effect of flux recovery by intermittent back-ozonation decreased. Therefore, it is preferable to operate membrane cleaning before the foulant is consolidated on membrane surface.

Experimental study on feasibility test for removing particles in air scouring membrane backwash water with metal membrane (금속막을 이용한 저압 막 공기병용 역세척수 처리 타당성 연구)

  • Park, No-Suk;Yoon, Sukmin;Moon, Yong-Taik;Lee, Sun-Ju;Park, Sunghyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.251-259
    • /
    • 2015
  • The main objective of this research is to study feasibility for applying metal membrane to remove particles from air scouring membrane backwash water. Also, the research was conducted to investigate the influence of polyamine coagulation on floc growth in membrane backwash water as pretreatment for removal particles. From the results of experiments for evaluating the influence of polyamine coagulation on floc growth, it was investigated that particles in the rage of $2{\sim}50{\mu}m$ grew up to $30{\sim}5,000{\mu}m$. In addition, all six metal membranes showed lower removal efficiency, which was 0.87~13.89%, in the case of no polyamine coagulant. On the other hand, in the case of injecting polyamine coagulant, those did extremely high efficiency in 56~92%. From the SEM(Scanning Electron Microscope) images of filtered wiremesh and metal foam membrane, sieve effects were predominant for liquid solid separation in wiremesh and adsorption and diffusion capture effects were predominant in metal foam membrane.

Manufacturing and Filtration Performance of Microfiltration Metal Membrane Using Rolling Process (압연공정을 이용한 금속 정밀여과막의 제조 및 여과특성)

  • Kim, Jong-Oh;Min, Seok-Hong;Jung, Jong-Tae
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 2007
  • The manufacturing process of metal membrane made of only metal mesh and both metal mesh and powder with using rolling process have been studied. In the rolling of metal mesh, selected metal meshes were rolled with the reduction ratio of 10%, 20%, and 30%, respectively. Such rolling process resulted in the decrease of mesh pore size through reduction the cross sectional area of mesh and changing the diameter of mesh wires. Also, it enhanced the filtration ratio of rolled mesh which is almost same as the filtration ratio of upper grade unrolled mesh and the reliability of membrane by making pore size distribution become more uniform. In fabricating metal powder layer onto metal mesh, using PVA(polyvinyl alcohol) as a binder of powder, drying the metal powder layer at $100^{\circ}C$ for 1 hr, and sintering it at $1,000^{\circ}C$ for 3 hr in vacuum were to be optimum conditions for obtaining good quality of metal powder layer on metal mesh with high pore density but no crack. With additional rolling of metal powder layer on metal mesh with 30% reduction before sintering, metal membrane which filtration ratio is about $0.7{\mu}m$ has been successfully manufactured.

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

Advanced Wastewater Treatment using Bioreactor Combined with Alternative Membrane (하수의 고도처리를 위한 저비용 저에너지의 대체 막을 조합한 생물반응기의 개발)

  • Kim, Dong-Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • In order to decrease the high costs of membrane process, we have tried to develop two alternatives to membrane; a cartridge type filter and a metal membrane were tested for the high permeation flux with low cost and low energy. This research mainly focused on three points; 1) operation with high permeation flux by using of a cartridge type filter and a metal membrane, 2) removals of the filterable organic materials (FOC) by pretreatments for the membrane fouling control, and 3) advanced wastewater treatment by SMBR process with intermittent aeration and high MLSS. An Intermittently aerated membrane bioreactor using a submerged micro filter (cartridge type) was applied in laboratory scale for the advanced wastewater treatment. To minimize membrane fouling, intermittent aeration was applied inside of the filter with $3.0kg_f/cm^2$. The experiments was conducted for 6 months with three different HRTs (8, 10, 12 hr) and high MLSS of 6,000 and 10,000mg/L. The filtration process could be operated up to 50 days with permeation flux of 500LMH. Regardless of the operating conditions, more than 95% of COD, BOD and SS were removed. Fast and complete nitrification was accomplished, and denitrification was appeared to be the rate-limiting step. More than 75% T-N could be removed due to the endogenous denitrification. T-P removal efficiency was increased to 80% under the condition of MLSS 10,000mg/L.