• Title, Summary, Keyword: Metal oxide chemical vapor deposition

Search Result 96, Processing Time 0.043 seconds

Photoluminescence property of vertically aligned ZnO nanorods.

  • Das, S.N.;Kar, J.P.;Choi, J.H.;Myoung, J.M.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • /
    • pp.25.2-25.2
    • /
    • 2009
  • Vertically aligned zinc oxide(ZnO) nanorods (NRs) with different surface morphology were grown by metal organic chemical vapor deposition (MOCVD) on sapphire substrate with different deposition condition. Based on the surface morphology, ZnO nanostructures are divided into three types: nanoneedles, nanonails and nanorods with rounded tip. Variable temperature photoluminescence (PL) have employed to probe the exciton recombination in high density and vertically aligned ZnO Nanorod arrays. Low temperature photoluminescence measurements do not show any significant yellow emission, but the near band edge excitonic emission shows very strong dependence with the surface morphology. The recombination properties are expected to be different due to different surface-to-volume ratio and distribution of potential fluctuations of intrinsic defects.

  • PDF

Study on the Development of CVD Precursors II-Synthesis and Properties of New Lathanum β-diketonates

  • 임종태;홍성택;이중철;이익모
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.11
    • /
    • pp.1023-1031
    • /
    • 1996
  • A new synthetic route for the lanthanum β-diketonate compounds via in-situ formed lanthanum alkyl complexes was developed in the process for the development of suitable MOCVD (metal-organic chemical vapor deposition) precursors of PLT, one of the promising material for the ferroelectric film. A series of lanthanum β-diketonate compounds were successfully synthesized by this method. This new method is found to have some merits; versatile method for almost every β-diketone, β-hydroxyketone, and β-hydroxyaldehyde, short reaction time, easy purification for high purity, moderate to high yield, and easy access to anhydrous compounds. In some cases, anhydrous oligomeric products fail to show the higher volatility. On the other hand, some lanthanum β-diketonates with aromatic groups such as La(1,3-biphenyl-l,3-propandione)3 are found to have favorable properties for a precursor of lanthanum oxide, one of major components of PLT, such as low melting point, and much higher decomposition temperature. A plausible pyrolysis mechanism is proposed by the TGA, where consecutive dissociation of R, CO, CH, C, and O fragments occurs.

  • PDF

Al$_2$O$_3$ formation on Si by catalytic chemical vapour deposition

  • Ogita, Yoh-Ichiro;Shinshi Iehara;Toshiyuki Tomita
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.63.1-63
    • /
    • 2003
  • Catalytic chemical vapor deposition (Cat-CVD) has been developed to deposit alumina(Al$_2$O$_3$) thin films on silicon (Si) crystal using N$_2$ bubbled tir-methyl aluminium [Al(CH$_3$)$_3$, TMA] and molecular oxygen (O$_2$) as source species and tungsten wires as a catalyzer. The catalyzer dissociated TMA at approximately 600$^{\circ}C$ The maximum deposition rate was 18 nm/min at a catalyzer temperature of 1000 and substrate temperature of 800$^{\circ}C$. Metal oxide semiconductor (MOS) diodes were fabricated using gates composed of 32.5-nm-thick alumina film deposited as a substrate temperature of 400oC. The capacitance measurements resulted in a relatively dielectric constant of 7, 4, fixed charge density of 1.74*10e12/$\textrm{cm}^2$, small hysteresis voltage of 0.12V, and very few interface trapping charge. The leakage current was 5.01*10e-7 A/$\textrm{cm}^2$ at a gate bias of 1V.

  • PDF

Tungsten Silicide ($WSi_2$) for Alternate Gate Metal in Metal-Oxide-Semiconductor (MOS) Devices (금속-산화막-반도체 소자에서 대체 게이트 금속인 텅스텐 실리사이드의 특성 분석)

  • 노관종;윤선필;양성우;노용한
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.64-67
    • /
    • 2000
  • Tungsten silicide(WSi$_2$) is proposed for the alternate gate electrode of ULSI MOS devices. Good structural property and low resistivity of WSi$_2$ deposited by a low pressure chemical vapor deposition(LPCVD) method directly on SiO$_2$ is obtained after annealing. Especially, WSi$_2$-SiO2 interface remains flat after annealing tungsten silicide at high temperature. Electrical characteristics of annealed WSi$_2$-SiO$_2$-Si(MOS) capacitors were improved in view of charge trapping.

  • PDF

Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition (유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성)

  • Kim, Dae-Sik;Kang, Byung Hoon;Lee, Chang-Min;Byun, Dongjin
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Field-emission properties of carbon nanotubes coated by zinc oxide films (산화아연막이 증착된 탄소 나노튜브의 전계방출 특성)

  • Kim, Jong-Pil;Noh, Young-Rok;Lee, Sang-Yeol;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1270_1271
    • /
    • 2009
  • In this research, gallium-incorporated zinc oxide (ZnO:Ga) thin films have been used as a coating material for enhancing the field-emission property of CNT-emitters. Multi-walled CNTs were directly grown on conical-type ($250{\mu}m$ in diameter) metal-tip substrates at $700^{\circ}C$ by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The pulsed laser deposition (PLD) technique was used to produce 5wt% gallium-doped ZnO (5GZO) films with very low stress. The structural properties of ZnO and 5GZO coated CNTs were characterized by Raman spectroscopy. Field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) were also used to monitor the variation in the morphology and microstructure of CNTs before and after 5GZO-coating. The measurement of the field emission characteristics showed that the emitter that coated the 5GZO (10nm) on CNTs exhibited the best performance: a maximum emission current of $325{\mu}A$, a threshold field of 2.2 V/${\mu}m$.

  • PDF

Direct Growth of Graphene at Low Temperature for Future Device Applications

  • Kim, Bum Jun;Nasir, Tuqeer;Choi, Jae-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.3
    • /
    • pp.203-223
    • /
    • 2018
  • The development of two-dimensional graphene layers has recently attracted considerable attention because of its tremendous application in various research fields. Semi-metal materials have received significant attention because of their excellent biocompatibility as well as distinct physical, chemical, and mechanical properties. Taking into account the technical importance of graphene in various fields, such as complementary metal-oxide-semiconductor technology, energy-harvesting and -storage devices, biotechnology, electronics, light-emitting diodes, and wearable and flexible applications, it is considered to be a multifunctional component. In this regard, material scientists and researchers have primarily focused on two typical problems: i) direct growth and ii) low-temperature growth of graphene. In this review, we have considered only cold growth of graphene. The review is divided into five sections. Sections 1 and 2 explain the typical characteristics of graphene with a short history and the growth methods adopted, respectively. Graphene's direct growth at low temperatures on a required substrate with a well-established application is then precisely discussed in Sections 3 and 4. Finally, a summary of the review along with future challenges is described in Section 5.

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF