• Title, Summary, Keyword: Mixed Noise

Search Result 307, Processing Time 0.059 seconds

A Mixed Nonlinear Filter for Image Restoration under AWGN and Impulse Noise Environment

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.591-596
    • /
    • 2011
  • Image denoising is a key issue in all image processing researches. Generally, the quality of an image could be corrupted by a lot of noise due to the undesired conditions of image acquisition phase or during the transmission. Many approaches to image restoration are aimed at removing either Gaussian or impulse noise. Nevertheless, it is possible to find them operating on the same image, which is called mixed noise and it produces a hard damage. In this paper, we proposed noise type classification method and a mixed nonlinear filter for mixed noise suppression. The proposed filtering scheme applies a modified adaptive switching median filter to impulse noise suppression and an efficient nonlinear filer was carried out to remove Gaussian noise. The simulation results based on Matlab show that the proposed method can remove mixed Gaussian and impulse noise efficiently and it can preserve the integrity of edge and keep the detailed information.

An Effective Denoising Method for Images Contaminated with Mixed Noise Based on Adaptive Median Filtering and Wavelet Threshold Denoising

  • Lin, Lin
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.539-551
    • /
    • 2018
  • Images are unavoidably contaminated with different types of noise during the processes of image acquisition and transmission. The main forms of noise are impulse noise (is also called salt and pepper noise) and Gaussian noise. In this paper, an effective method of removing mixed noise from images is proposed. In general, different types of denoising methods are designed for different types of noise; for example, the median filter displays good performance in removing impulse noise, and the wavelet denoising algorithm displays good performance in removing Gaussian noise. However, images are affected by more than one type of noise in many cases. To reduce both impulse noise and Gaussian noise, this paper proposes a denoising method that combines adaptive median filtering (AMF) based on impulse noise detection with the wavelet threshold denoising method based on a Gaussian mixture model (GMM). The simulation results show that the proposed method achieves much better denoising performance than the median filter or the wavelet denoising method for images contaminated with mixed noise.

Mixed Weighted Filter for Removing Gaussian and Impulse Noise

  • Yinyu, Gao;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.379-381
    • /
    • 2011
  • The image signal is often affected by the existence of noise, noise can occur during image capture, transmission or processing phases. noises caused the degradation phenomenon and demage the original signal information. Many studies are being accomplished to restore those signals which corrupted by mixed noise. In this paper, we proposed mixed weighted filter for removing Gaussian and impulse noise. we first charge the noise type, then, Gaussian is removed by a weighted mean filter and impulse noise is removed by self-adaptive weighted median filter that can not only remove mixed noise but also preserve the details. And through the simulation, we compared with the conventional algorithms and indicated that proposed method significant improvement over many other existing algorithms and can preserve image details efficiently.

  • PDF

Inductive Switching Noise Suppression Technique for Mixed-Signal ICs Using Standard CMOS Digital Technology

  • Im, Hyungjin;Kim, Ki Hyuk
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.268-271
    • /
    • 2016
  • An efficient inductive switching noise suppression technique for mixed-signal integrated circuits (ICs) using standard CMOS digital technology is proposed. The proposed design technique uses a parallel RC circuit, which provides a damping path for the switching noise. The proposed design technique is used for designing a mixed-signal circuit composed of a ring oscillator, a digital output buffer, and an analog noise sensor node for $0.13-{\mu}m$ CMOS digital IC technology. Simulation results show a 47% reduction in the on-chip inductive switching noise coupling from the noisy digital to the analog blocks in the same substrate without an additional propagation delay. The increased power consumption due to the damping resistor is only 67% of that of the conventional source damping technique. This design can be widely used for any kind of analog and high frequency digital mixed-signal circuits in CMOS technology

Analytical Procedures for Designing an Optimal Noise Hazard Prevention Program

  • Asawarungsaengkul, Krisada;Nanthavanij, Suebsak
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.165-175
    • /
    • 2005
  • Two extreme and one mixed procedures for designing a noise hazard prevention program are discussed in this paper. The two extreme design procedures (engineering-based and HPD-based) yield upper and lower bounds of the total noise control cost, respectively; while the mixed design procedure provides an optimal noise hazard prevention program within a given total budget. The upper bound of the workforce size for job rotation is approximated using a heuristic procedure. Six optimization models are developed and utilized by the mixed procedure to eliminate or reduce excessive noise levels (or noise exposures) in an industrial workplace. The mixed procedure also follows the OSHA’s hierarchy of noise control. A numerical example is given to demonstrate the application of the proposed design procedures.

Modified Weighted Filter Algorithm for Noise Elimination In Mixed Noise Environments

  • Gao, Yinyu;Kim, Nam-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.63-69
    • /
    • 2012
  • Noise is regarded as an unwanted component of the image because it significantly reduces image quality. And image is often corrupted by mixed noise. In this paper an efficient modified weighted filter algorithm which combines spatial weight and intensity weight is proposed for removing mixed noise. In the proposed method, the filtering mask is separated into the four sub-windows and the parameters of the weights are confirmed by calculating local standard deviation and the mean of four sub-windows' standard deviations. Considering the spatial information and intensity information, the proposed method has good performance on not only noise elimination but also preservation of details. Simulation results demonstrate that the proposed method performs better than conventional algorithms.

Non-Stationary/Mixed Noise Estimation Algorithm Based on Minimum Statistics and Codebook Driven Short-Term Predictor Parameter Estimation (최소 통계법과 Short-Term 예측계수 코드북을 이용한 Non-Stationary/Mixed 배경잡음 추정 기법)

  • Lee, Myeong-Seok;Noh, Myung-Hoon;Park, Sung-Joo;Lee, Seok-Pil;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3
    • /
    • pp.200-208
    • /
    • 2010
  • In this work, the minimum statistics (MS) algorithm is combined with the codebook driven short-term predictor parameter estimation (CDSTP) to design a speech enhancement algorithm that is robust against various background noise environments. The MS algorithm functions well for the stationary noise but relatively not for the non-stationary noise. The CDSTP works efficiently for the non-stationary noise, but not for the noise that was not considered in the training stage. Thus, we propose to combine CDSTP and MS. Compared with the single use of MS and CDSTP, the proposed method produces better perceptual evaluation of speech quality (PESQ) score, and especially works excellent for the mixed background noise between stationary and non-stationary noises.

Restoration of Images Contaminated by Mixed Gaussian and Impulse Noise using a Complex Method

  • Yinyu, Gao;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.336-340
    • /
    • 2011
  • Many approaches to image restoration are aimed at removing either gauss or impulse noise. This is because both types of degradation processes are distinct in nature, and hence they are easier to manage when considered separately. Nevertheless, it is possible to find them operating on the same image, which produces a hard damage. This happens when an image, already contaminated by Gaussian noise in the image acquisition procedure, undergoes impulsive corruption during its digital transmission. Here we proposed an algorithm first judge the type of the noise according to the difference values of pixel's neighborhood region and impulse noise's characteristic. Then removes the gauss noise by modified weighted mean filter and removes the impulse noise by modified nonlinear filter. The result of computer simulation on test images indicates that the proposed method is superior to traditional filtering algorithms. The proposed method can not only remove mixed noise effectively, but also preserve image details.

Image Restoration for Edge Preserving in Mixed Noise Environment (복합잡음 환경에서 에지 보존을 위한 영상복원)

  • Long, Xu;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.727-734
    • /
    • 2014
  • Digital processing technologies are being studied in various areas of image compression, recognition and recovery. However, image deterioration still occurs due to the noises in the process of image acquisition, storage and transmission. Generally in the typical noises which are included in the images, there are Gaussian noise and the mixed noise where the Gaussian noise and impulse noise are overlapped and in order to remove these noises, various researches are being executed. In order to preserve the edge and effectively remove mixed noises, image recovery filter algorithm was suggested in this study which sets and processes the adaptive weight using the median values and average values after noise judgment. Additionally, existing methods were compared through simulations and PSNR(peak signal to noise ratio) was used as a judgment standard.

Noise Removal with Spatial Characteristics in Mixed Noise Environment (복합 잡음 환경에서 공간적 특성을 고려한 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.254-260
    • /
    • 2019
  • Recently, the importance of signal processing has become gradually significant, as the frequency of video media increases in various fields. However, numerous kinds of noise generated in the transmission and reception processes can possibly affect the signal information, and the noise removal is for that reason essential as a preprocessing step. In this paper, we propose an algorithm to remove the mixed noise which is composed of impulse noise and AWGN. This algorithm is used for image restoration by noise judgment for efficient noise removal in a complex noise environment, and the noise is removed by considering spatial characteristics and pixel variations. Simulation results show that unlike existing methods, the algorithm has excellent noise cancellation characteristics by minimizing both noise effects and consequently eliminating the mixed noise; for objective judgment, we compared and analyzed the data using PSNR and profile.