• Title, Summary, Keyword: Molecular interactions

Search Result 802, Processing Time 0.035 seconds

Surface Interactions of Model Peptides for Mussel Adhesive Protein

  • Cho, Eun-Kyung;Lee, Yoon-Hee;Cho, Nam-Jun;Cha, Hyung-Joon
    • 한국생물공학회:학술대회논문집
    • /
    • /
    • pp.630-633
    • /
    • 2003
  • The mussel adhesive protein Mefp-1 is a natural, strong and durable adhesive that is stable under corrosive, saline conditions. Mefp-1 is found in the marine mussel Mytilus edulis and it has a molecular weight of ca. 130,000. The primary structure is mainly composed of repeating decapetides: Ala-Lys-Pro -Ser-Tyr Hyp-Hyp-Thr-DOPA-Lys. To elucidate the mechanism by which Mefp-1 bonds to metal surfaces, we have used surface-enhanced Raman spectroscopy to study the interactions of peptides related to the Mefp-1 decapeptide repeat with gold surfaces. We have concluded that the tyrosine residue and the carboxyl terminus interact strongly with the gold surface, and that proline and hydroxyproline constrain the conformations of the peptides, thereby limiting the types of possible interactions of the functional groups with the gold surface.

  • PDF

Controlling Intermolecular Interactions, Optical Property, and Charge Transport in Conjugated Polyelectrolytes for Applications in Opto-electronics Devices

  • Nguyen, Thuc-Quyen;Garcia, Andres;Yang, Renqiang;Bazan, Guillermo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • /
    • pp.229-229
    • /
    • 2006
  • Recently there has been significant interest in utilizing functional semiconductor polymers for electronic and opto-electronic devices such as Light-emitting diodes, thin film field effect transistors, solar cells, displays, and chemical and biosensors. However, better materials and further understanding of their electronic properties are critical for devices based on these materials. In this work, we use various scanning probe techniques, spectroscopy, and device fabrication to study the molecular interactions, optical and charge transport properties in conjugated polyelectrolytes. Using chemical synthesis approach, we are able to tune the molecular packing and interactions in these materials, which in turn, influence their electronic properties and device performance.

  • PDF

Osmotic Cross Second Virial Coefficient ($B_{23}$) of Unfavorable Proteins: Modified Lennard-Jones Potential

  • Choi, Sang-Ha;Bae, Young-Chan
    • Macromolecular research
    • /
    • v.17 no.10
    • /
    • pp.763-769
    • /
    • 2009
  • A chromatographic method is used to measure interactions between dissimilar proteins in aqueous electrolyte solutions as a function of ionic strength, salt type, and pH. One protein is immobilized on the surface of the stationary phase, and the other is dissolved in electrolyte solution conditions flowing over that surface. The relative retention of proteins reflects the mean interactions between immobile and mobile proteins. The osmotic cross second virial coefficient calculated by assuming a proposed potential function shows that the interactions of unfavorable proteins depend on solution conditions, and the proposed model shows good agreement with the experimental data of the given systems.

Effects of Various Reagents on Textural Properties of Soy Protein Gel (대두단백겔의 물성에 미치는 분자결합력 저해 시약의 영향)

  • 배동호;정호선
    • Korean Journal of Food Preservation
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1998
  • The changes in gel characteristics of soy protein as a result of various reagents that alter specific interactions which affect the formation and textural properties of gels, were studied. The reagents were added to 15% soy protein solutions prior to heat treatment. The gels were not formed with urea, indicating that hydrogen bonds significantly contributed to the formation and hardness of soy protein gel. Hydrophobic interactions and disulfide bonds compensated for hydrogen bonds and the contributions of electrostatic interactions to gel hardness are relatively insignificant. The farce primarily responsible for gel cohesiveness appeared to be disulfide bonds, because a significant decrease in cohesiveness was found only with the presence of N-ethylmaleimide. Adhesiveness decreased only with the addition of urea, and thus the contribution of hydrogen bonding to adhesiveness of gel could be concluded to be resent. However, adhesiveness was suggested to be interpreted not only wile molecular forces involved in gel formation but also with hydration properties of protein.

  • PDF

Controlling Molecular Interactions between Polyurethane Copolymers by Grafting Isopropyl Functional Groups (이소프로필 작용기가 그라프트된 폴리우레탄 공중합체의 분자간 인력 조절)

  • Chung, Yong-Chan;Choi, Jae Won;Lee, Hye Lim;Chun, Byoung Chul
    • Textile Science and Engineering
    • /
    • v.50 no.4
    • /
    • pp.258-265
    • /
    • 2013
  • Grafted isopropyl groups were used to control the molecular interactions between polyurethane (PU) copolymers, and their effect on the tensile properties of PU was investigated. The grafted isopropyl groups were selected to interrupt the molecular interactions and disturb the close contact between PU chains through its branched structure, and thus improve the low-temperature recovery while maintaining the high tensile properties and the shape recovery at ambient temperature. The grafted isopropyl groups made a difference to the phase separation of the hard and soft segments in the PU structure, as determined by IR and DSC. The crosslink density and viscosity experienced an unusual increase with the increase in isopropyl content owing to crosslinking by the grafting reagent. The shape recovery and retention remained high even with the grafted isopropyl groups. Finally, the effect of the isopropyl groups on low-temperature recovery was compared with that of the linear PU, and the reason for the flexibility is discussed.

Cell-Based Assay Design for High-Content Screening of Drug Candidates

  • Nierode, Gregory;Kwon, Paul S.;Dordick, Jonathan S.;Kwon, Seok-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.213-225
    • /
    • 2016
  • To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as high-content screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner.