• Title, Summary, Keyword: Molecular interactions

Search Result 802, Processing Time 0.044 seconds

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells (SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.501-512
    • /
    • 2020
  • Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

On the Biological Functions of Equine Chorionic Gonadotropin (말의 융모성 성선자극 호르몬의 생화학적 기능)

  • 민관식;윤종택
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.299-308
    • /
    • 2002
  • In horse, a single gene encodes both eCG and eLH $\beta$ subunits. The difference between eCG and eLH lies in the structure of their glycoresidues, which are both sialylated and sulfated in LH and sialylated in CG eCG consists of highly glycosyiated $\alpha$- and $\beta$-subunits and is an unique member of the gonadotropin family because it elicits response characteristics of both FSH and LH in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of gonadotropin structure-function relationships and the understanding of the molecular bases of the specific interactions of these hormones with their receptors. Thus, eCG is a dintinct molecule from the view points of its biological function and glycoresidue structures. The oligosaccharide at Asn 56 of the $\alpha$-subunit plays an indispensable role, whereas the carboxyl-terminal extension of the eCG $\beta$-subunit with its associated O-linked oligosaccharides is not improtant for, the in vitro LH-like activity of eCG. In contrast, both N- and O-linked oligosaccharides play important roles for FSH-like activity and increase FSH-like activity by removal of N- and O-linked oligosaccharides. Therefore, the dual LH- and FSH-like activities of eCG can be clearly separated by removal of either the N-linked oligosaccharide on the $\alpha$-subunit or CTP-associated O-linked oligosaccharides from its $\beta$-subunit. The glycoresidues seem to play crucial roles fer biological activities. The tethered-eCG was effciently secreted and showed similar LH-like activity to the dimeric eCG $\alpha$/ $\beta$ and native eCG. FSH-like activity of the tethered-eCG was also shown similarly in comparison with the native and wild type eCG $\alpha$/ $\beta$. Our data for the first time suggest that the tethered-eCG can be expressed efficiently and the produced product by the CHO-Kl cells is fully LH- and FSH-like activities in rat in vitro bioassay system. Our results also suggest that this molecular can imply particular models ot FSH-like activity not LH-like activity in the eCG. Taken together, these data indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion.

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.

Physicochemical Characteristics of Galactomannan by Fractionation to Evaluate Heterogeneity (불균일 성질을 평가하기 위한 분획화된 galactomannan의 이화학적 특성)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.428-433
    • /
    • 2013
  • Heterogenous samples of locust bean gum (galactomannan) were prepared into homogeneous substances. Locust bean gum was fractioned using ammonium sulfate (14.11-23.08%, w/w). The intrinsic viscosity was obtained by extrapolating reduced viscosity versus concentration by using an Ubbelohde viscometer. The ranges of intrinsic viscosity for fractions that not included protein (F3-F6) and fractions that included protein (F1-F2) were 9.89-8.10 and 8.44-4.59, respectively. Values for Huggins' coefficient (k'), which depends on physical interactions, were 0.46-0.78. Increasing ammonium sulfate concentration was associated with a weak trend towards lower molecular weight and intrinsic viscosity by size-exclusion chromatography (SEC): $M_w$ ranged from 674 to 617 kg/mol and [${\eta}$] from 9.80 to 8.10 dL/g between F3 and F6. The evaluations of those fractions by using SEC and the Ubbelohde viscometer produced very similar values, as predicted. We verified the application of a gradient of ammonium sulfate to precipitate locust bean gum into fractions of different molecular size and show structural variations.

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.1
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • THE JOURNAL OF THE KOREAN ACADEMY OF PEDTATRIC DENTISTRY
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

JSAP1 Interacts with Kinesin Light Chain 1 through Conserved Binding Segments (JSAP1과 Kinesin Light Chain 1의 결합 및 결합부위 규명)

  • Kim, Sang-Jin;Lee, Chul-Hee;Park, Hye-Young;Yea, Sung-Su;Jang, Won-Hee;Lee, Sang-Kyeong;Park, Yeong-Hong;Cha, Ok-Soo;Moon, Il-Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.17 no.7
    • /
    • pp.889-895
    • /
    • 2007
  • A conventional kinesin, KIF5/kinesin-I, is composed of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) and binds directly to microtubules. KIF5 motor mediates the transport of various membranous organelles, but the mechanism how they recognize and bind to a specific cargo has not yet been completely elucidated. Here, we used the yeast two-hybrid system to identify the neuronal protein(s) that interacts with the tetratricopeptide repeats (TRP) of KLCI and found a specific interaction with JNK/stress-activated protein kinase-associated protein 1 (JSAP1/JIPP3). The yeast two-hybrid assay demonstrated that the TRP 1,2 domain-containing region of KLCI mediated binding to the leucine zipper domain of JSAP1. JSAP1 also bound to the TRP region of lac2 but not to neuronal KIF5A, KIF5C and ubiquitous KIF5B in the yeast two-hybrid assay. In addition, these proteins showed specific interactions in the GST pull-down assay and by co-immunoprecipitation. KLCI and KIF5B interacted with GST-ISAP1 fusion proteins, but not with GST alone. An antibody to JSAPI specifically co-immunoprecipitated KIF5s associated with JSAP1 from mouse brain extracts. These results suggest that JSAP1, as KLC1 receptor, is involved in the KIF5 mediated transport.