• Title, Summary, Keyword: Monte Carlo simulation method

### Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

• 이재영;고홍석
• Magazine of the Korean Society of Agricultural Engineers
• /
• v.32 no.E
• /
• pp.59-66
• /
• 1990
• Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

### Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads

• Cheng, Jin;Xiao, Ru-Cheng;Jiang, Jian-Jing
• Structural Engineering and Mechanics
• /
• v.17 no.2
• /
• pp.267-279
• /
• 2004
• This paper presents an improved Monte Carlo simulation for the probabilistic determination of initial cable forces of cable-stayed bridges under dead loads using the response surfaces method. A response surface (i.e. a quadratic response surface without cross-terms) is used to approximate structural response. The use of the response surface eliminates the need to perform a deterministic analysis in each simulation loop. In addition, use of the response surface requires fewer simulation loops than conventional Monte Carlo simulation. Thereby, the computation time is saved significantly. The statistics (e.g. mean value, standard deviation) of the structural response are calculated through conventional Monte Carlo simulation method. By using Monte Carlo simulation, it is possible to use the existing deterministic finite element code without modifying it. Probabilistic analysis of a truss demonstrates the proposed method' efficiency and accuracy; probabilistic determination of initial cable forces of a cable-stayed bridge under dead loads verifies the method's applicability.

### A Second-Order Design Sensitivity-Assisted Monte Carlo Simulation Method for Reliability Evaluation of the Electromagnetic Devices

• Ren, Ziyan;Koh, Chang-Seop
• Journal of Electrical Engineering and Technology
• /
• v.8 no.4
• /
• pp.780-786
• /
• 2013
• In the reliability-based design optimization of electromagnetic devices, the accurate and efficient reliability assessment method is very essential. The first-order sensitivity-assisted Monte Carlo Simulation is proposed in the former research. In order to improve its accuracy for wide application, in this paper, the second-order sensitivity analysis is presented by using the hybrid direct differentiation-adjoint variable method incorporated with the finite element method. By combining the second-order sensitivity with the Monte Carlo Simulation method, the second-order sensitivity-assisted Monte Carlo Simulation algorithm is proposed to implement reliability calculation. Through application to one superconductor magnetic energy storage system, its accuracy is validated by comparing calculation results with other methods.

### Reliability Analysis for Structure Design of Automatic Ocean Salt Collector Using Sampling Method of Monte Carlo Simulation

• Song, Chang Yong
• Journal of Ocean Engineering and Technology
• /
• v.34 no.5
• /
• pp.316-324
• /
• 2020
• This paper presents comparative studies of reliability analysis and meta-modeling using the sampling method of Monte Carlo simulation for the structure design of an automatic ocean salt collector (AOSC). The thickness sizing variables of structure members are considered as random variables. Probabilistic performance functions are selected from strength performances evaluated via the finite element analysis of an AOSC. The sampling methods used in the comparative studies are simple random sampling and Sobol sequences with varied numbers of sampling. Approximation methods such as the Kriging model is applied to the meta-model generation. Reliability performances such as the probability failure and distribution are compared based on the variation of the sampling method of Monte Carlo simulation. The meta-modeling accuracy is evaluated for the Kriging model generated from the Monte Carlo simulation and Sobol sequence results. It is discovered that the Sobol sequence method is applicable to not only to the reliability analysis for the structural design of marine equipment such as the AOSC, but also to Kriging meta-modeling owing to its high numerical efficiency.

### A Study on Monte Carlo Simulation by beam scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster (산업재해 방지를 위한 New Austria Tunnel Method 수지에서 빔산란에 의한 Monte Carlo 시뮬레이션에 관한 연구)

• Nam, Sang-Sung;Lee, Joo-Youb
• Journal of the Korean Applied Science and Technology
• /
• v.30 no.3
• /
• pp.444-450
• /
• 2013
• The influences of scatterer and absorber in turbid material by light scattering on silica fume of additive were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$,${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the distance from source to detector is closer, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.

### Development of Ion Beam Monte Carlo Simulation and Analysis of Focused Ion Beam Processing (이온빔 몬테 카를로 시물레이션 프로그램 개발 및 집속 이온빔 공정 해석)

• Kim, Heung-Bae
• Journal of the Korean Society for Precision Engineering
• /
• v.29 no.4
• /
• pp.479-486
• /
• 2012
• Two of fundamental approaches that can be used to understand ion-solid interaction are Monte Carlo (MC) and Molecular Dynamic (MD) simulations. For the simplicity of simulation Monte Carlo simulation method is widely preferred. In this paper, basic consideration and algorithm of Monte Carlo simulation will be presented as well as simulation results. Sputtering caused by incident ion beam will be discussed with distribution of sputtered particles and their energy distributions. Redeposition of sputtered particles that are experienced refraction at the substrate-vacuum interface additionally presented. In addition, reflection of incident ions with reflection coefficient will be presented together with spatial and energy distributions. This Monte Carlo simulation will be useful in simulating and describing ion beam related processes such as Ion beam induced deposition/etching process, local nano-scale distribution of focused ion beam implanted ions, and ion microscope imaging process etc.

### Experimental Measurement and Monte Carlo Simulation the Correction Factor for the Medium-Energy X-ray Free-air Ionization Chamber

• Yu, Jili;Wu, Jinjie;Liao, Zhenyu;Zhou, Zhenjie
• Journal of the Korean Physical Society
• /
• v.73 no.10
• /
• pp.1466-1472
• /
• 2018
• A key comparison has been made between the air-kerma standards of the National Institute of Metrology (NIM), China, and other Asia Pacific Metrology Programme (APMP) members in the medium-energy X-ray. This paper reviews the primary standard Free-air ionization chamber correction factor experimental method and Monte Carlo simulation method in the NIM. The experimental method and the Monte Carlo simulation method are adopted to obtain the correction factor for the medium-energy X-ray primary standard free-air ionization chamber at 100 kV, 135 kV, 180 kV, 250 kV four CCRI reference qualities. The correction factor has already been submitted to the APMP as key comparison data and the results are in good agreement with those obtained in previous studies. This study shows that the experimental method and the EGSnrc simulation method are usually used in the measurement of the correction factor. In particular, the application of the simulation methods is more common.

### The Comparison Analysis of an Estimators of Nonlinear Regression Model using Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 비선형회귀추정량들의 비교 분석)

• 김태수;이영해
• Journal of the Korea Society for Simulation
• /
• v.9 no.3
• /
• pp.43-51
• /
• 2000
• In regression model, we estimate the unknown parameters by using various methods. There are the least squares method which is the most general, the least absolute deviation method, the regression quantile method and the asymmetric least squares method. In this paper, we will compare each others with two cases: firstly the theoretical comparison in the asymptotic sense and then the practical comparison using Monte Carlo simulation for a small sample size.

### Physically Based Landslide Susceptibility Analysis Using a Fuzzy Monte Carlo Simulation in Sangju Area, Gyeongsangbuk-Do (Fuzzy Monte Carlo simulation을 이용한 물리 사면 모델 기반의 상주지역 산사태 취약성 분석)

• Jang, Jung Yoon;Park, Hyuck Jin
• Economic and Environmental Geology
• /
• v.50 no.3
• /
• pp.239-250
• /
• 2017
• Physically based landslide susceptibility analysis has been recognized as an effective analysis method because it can consider the mechanism of landslide occurrence. The physically based analysis used the slope geometry and geotechnical properties of slope materials as input. However, when the physically based approach is adopted in regional scale area, the uncertainties were involved in the analysis procedure due to spatial variation and complex geological conditions, which causes inaccurate analysis results. Therefore, probabilistic method have been used to quantify these uncertainties. However, the uncertainties caused by lack of information are not dealt with the probabilistic analysis. Therefore, fuzzy set theory was adopted in this study because the fuzzy set theory is more effective to deal with uncertainties caused by lack of information. In addition, the vertex method and Monte Carlo simulation are coupled with the fuzzy approach. The proposed approach was used to evaluate the landslide susceptibility for a regional study area. In order to compare the analysis results of the proposed approach, Monte Carlo simulation as the probabilistic analysis and the deterministic analysis are used to analyze the landslide susceptibility for same study area. We found that Fuzzy Monte Carlo simulation showed the better prediction accuracy than the probabilistic analysis and the deterministic analysis.

### A Study on Monte Carlo Simulation by Beam Scattering in Resin of New Austria Tunnel Method for Safety of Industrial Disaster (산업재해 안전을 위한 New Austria Tunnel Method 수지에서 빔산란에 관한 Monte Carlo 시뮬레이션에 관한 연구)

• Kim, Ki-Jun;Lee, Joo-Youb
• Journal of the Korean Applied Science and Technology
• /
• v.29 no.3
• /
• pp.473-479
• /
• 2012
• The influences of scatterer and absorber in turbid material by light scattering were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the distance from source to detector is closer, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.