• Title, Summary, Keyword: Mooring system

Search Result 301, Processing Time 0.037 seconds

An experimental study on compliant buoy mooring system in shallow water (천해역 유연부이 계류시스템에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Hong, Seok-Won;Hong, Sup
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • /
    • pp.155-160
    • /
    • 2002
  • In this paper, a compliant buoy mooring system of a floating cylindrical structure in shallow water depth is studied experimentally. The compliant buoy mooring system consists of four buoys, vertical mooring legs and horizontal mooring lines. A series of model test were carried out at KRISO ocean engineering basin for various mooring parameters; line length, pretension of mooring leg and mooring layouts and environmental conditions; regular and irregular waves combined with current and wind. The mooring line tensions and 6-DOF motions of the floating structure were measured using water-proof load cells and 3 CCD camera system. The results of a series of model tests were discussed on nonlinear motion behaviors of the floating structure and characterisitics of cumulative distributions of mooring line peak tensions.

  • PDF

Study on Mooring System Design of Floating Offshore Wind Turbine in Jeju Offshore Area

  • Kim, Hyungjun;Jeon, Gi-Young;Choung, Joonmo;Yoon, Sung-Won
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.4
    • /
    • pp.209-217
    • /
    • 2013
  • This paper presents a mooring design procedure for a floating offshore wind turbine. Offshore environmental data for Jeju are taken from KHOA (Korea Hydrographic and Oceanographic Administration) and used for the environmental conditions in numerical analyses. A semi-submersible-type floating wind system with a 5-MW-class wind turbine studied by the DeepCwind Consortium is applied. Catenary mooring with a studless chain is chosen as the mooring system. Design deliverables such as the nominal sizes of chain and length of the mooring line are decided by considering the long-term prediction of the breaking strength of the mooring lines where a 100-year return period is used. The designed mooring system is verified using a fatigue calculation based on rain-flow cycle counting, an S-N curve, and a Miner's damage summation of rule. The mooring tension process is obtained from time-domain motion analyses using ANSYS/AQWA.

Quayside Mooring System Design of Prelude FLNG for Extreme Environmental Condition (극한환경조건에 대한 프릴루드 FLNG 안벽계류시스템 설계)

  • Cho, Jin-Woog;Yun, Sang-Woong;Kim, Bong-Jae;Choi, Jae-Woong;Kim, Booki;Yang, Seung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.21-27
    • /
    • 2018
  • The design and analysis of a quayside mooring system for safe mooring of Prelude FLNG under extreme environmental conditions were carried out. The design of the mooring system considered the yard operation conditions and maximum wind speed during a typhoon. In order to secure the mooring safety of Prelude FLNG under an extreme environment, a special steel structure was designed between the quay and Prelude FLNG to maintain the distance from the quay to a certain extent to avoid a collision with the inclined base. The mooring safety was also ensured by installing additional new parts on the quay. A mooring analysis and mooring safety review were performed with more rigorous modeling considering the nonlinearity of the mooring rope and fender. In order to secure additional safety of the mooring system under extreme environmental conditions, a safety assessment was conducted on the failures of the mooring components proposed in the marine mooring guidelines. Based on the results of the mooring analysis, it was confirmed that the Prelude FLNG can be safely moored even under the extreme conditions of typhoons, and a worst case scenario analysis verified that the mooring system design was robust enough. The proposed mooring analysis and design method will provide a basis for the safe mooring of ultra-large floating offshore structures of similar size in the future.

Mooring Cost Sensitivity Study Based on Cost-Optimum Mooring Design

  • Ryu, Sam Sangsoo;Heyl, Caspar;Duggal, Arun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The paper describes results of a sensitivity study on an optimum mooring cost as a function of safety factor and allowable maximum offset of the offshore floating structure by finding the anchor leg component size and the declination angle. A harmony search (HS) based mooring optimization program was developed to conduct the study. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. To find a trend of anchor leg system cost for the proposed sensitivity study, optimum costs after a certain number of improvisation were found and compared. For a case study a turret-moored FPSO with 3 ${\times}$ 3 anchor leg system was considered. To better guide search for the optimum cost, three different penalty functions were applied. The results show that the presented HS-based cost-optimum offshore mooring design tool can be used to find optimum mooring design values such as declination angle and horizontal end point separation as well as a cost-optimum mooring system in case either the allowable maximum offset or factor of safety varies.

A Positioning Mooring System Design for Barge Ship Based on PID Control Approach

  • Kim, Youngbok
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.94-99
    • /
    • 2013
  • This paper presents some experimental results about Position Mooring (PM) system applied to the barge ship. In PM operation, the station keeping in surge, sway of vessel is provided by the mooring system. In this paper, a system, consisting of a barge vessel and mooring lines, is mathematically modeled. The position and orientation of vessel is controlled by changing the tensions in the mooring lines. The PID control strategy is applied to evaluate the efficiency of proposed system. Experimental result which corresponds to the applied control strategy is presented and discussed.

Mooring loads analysis of submersible aquaculture cage system using finite element method

  • Kim, Tae-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.1
    • /
    • pp.44-53
    • /
    • 2006
  • The expansion of near shore aquaculture is feasibility of moving aquaculture facilities into the open ocean. Numerical modeling technique using finite element method was used to enable the optimum design and evaluation of submersible aquaculture cage system. The characteristics of mooring loads response in mooring lines under waves and current and their response amplitude operators were calculated for single and three point mooring configuration at the surface condition and submerged one. The static mooring loads without wave and current loading were similar for both the surface and submerged configuration. It was calculated that three point mooring was more adequate than single point mooring for the mooring configuration of submersible aquaculture cage system. The wave induced response amplitude operators for the single point mooring configuration with the influence of currents were identical to those without the influence of currents.

Quay Mooring Aanlysis for a Drillship in Typhoon Conditions (드릴쉽의 태풍 시 안벽 계류 해석)

  • Park, Moon-Kyu;Cho, Jin-Woog;Chung, Jin-Hyun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • /
    • pp.70-74
    • /
    • 2011
  • This paper describes the quay mooring analysis to verify the safety of a moored drillship in typhoon conditions. Mooring system consists of mooring equipments(deck bollards, shore bitts, mooring lines, fenders) to resist the extreme environmental condition. Wind force acting on the drillship is obtained from the wind tunnel test results. The strength of quay mooring system has been checked. The static mooring analysis shows that the designed mooring system satisfies the mooring design criteria. Vertical displacements of the drillship have been calculated considering the dynamic wave motions and static heelings due to the wind force acting on the ship. With the vertical displacements and the hull draft of drillship, the required water depth for quay mooring has been derived.

  • PDF

Investigation of Safety and Design of Mooring Lines for Floating Wave Energy Conversion (부유식 파력발전장치용 계류선의 설계 및 안전성 검토에 관한 연구)

  • Jung, Dong-Ho;Nam, Bo-Woo;Shin, Seung-Ho;Kim, Hyeon-Ju;Lee, Ho-Saeng;Moon, Deok-Soo;Song, Je-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.77-85
    • /
    • 2012
  • A study was performed on the design of a mooring line to maintain the position of a floating WEC (wave energy conversion) system. The procedure to design a mooring line is set up and the safety of the designed mooring system is evaluated using commercial software, Orcaflex. The characteristics curve for one line is analyzed to determine the properties and pretension of a mooring line. While considering the ocean environmental condition and importance of a floating WEC system, a multi-line layout is determined. A 4-point mooring system with 4 lines shows the instability in the yaw motion of the floating WEC system under a designed ocean environmental condition. The redesigned 4-point mooring system with 8 lines is found to be safe on the condition of a harsh ocean environment. The floating WEC system with the redesigned mooring system also shows stable motion in surge and pitch under operating conditions. From a parametric study on the mooring line length, the extreme value of the mooring line tension is found to be very sensitive to the pretension and length of mooring line. The results of this study can contribute to the establishment of a design procedure for mooring lines.

Preliminary Design of mooring line in floating wave energy farm (부유식 파력발전단지 조성을 위한 계류선 초기설계)

  • Jung, DongHo;Song, JaeHa;Shin, SeungHo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.16-21
    • /
    • 2013
  • In this paper, the mooring system for a floating wave energy farm is designed based on a two-dimensional analysis. The mooring system uses an anchorless mooring line linking two floaters in a floating wave energy farm. The basic equation to determine the length of the mooring line between the two floaters is proposed. The other properties such as the diameter and pretension are taken from the mooring line for a single floater. The dynamic behavior and safety of the designed mooring system under extreme ocean conditions are analyzed with the commercial software Orcaflex. A numerical study shows the stability and high safety in tension of the designed mooring lines for a floating wave energy farm. The proposed anchorless mooring system for a floating wave energy farm results in a considerable reduction in the length of the mooring line, contributing to the economics of a floating wave energy farm.

Analysis of Response behaviors of offshore mooring structures by a piecewise-linear system (구분적선형시스템을 이용한 해양 구조물의 거동분석)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.251-265
    • /
    • 1997
  • A piecewise-linear system is utilized to model the offshore mooring system. The approximated piecewise-linear restoring force is obtained to be compared with the analytically derived restoring force of a mooring system. Two systems are compared to verify the applicability of the piecewise-linear system to evaluate responses of the mooring system. Using the piecewise-linear system, the response behaviors of mooring systems are examined under various excitations. Nonlinearity of the system and effects of both system and excitation parameters are intensively examined. System responses are identified mainly by observing Poincare maps. The mooring system is found to have various types of responses such as regular harmonic, subharmonic and complex nonlinear behaviors, including chaos by utilizing a piecewise-linear system. Various values of parameters are applied to determine the effects of parameters upon system responses. Response domains are determined by establishing parametric maps.

  • PDF