• 제목, 요약, 키워드: Multi-hot 벡터

검색결과 2건 처리시간 0.045초

음절 단위 Multi-hot 벡터 표현을 활용한 Sequence-to-sequence Autoencoder 기반 한글 오류 보정기 (Sequence-to-sequence Autoencoder based Korean Text Error Correction using Syllable-level Multi-hot Vector Representation)

  • 송치성;한명수;조훈영;이경님
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • /
    • pp.661-664
    • /
    • 2018
  • 온라인 게시판 글과 채팅창에서 주고받는 대화는 실제 사용되고 있는 구어체 특성이 잘 반영된 텍스트 코퍼스로 음성인식의 언어 모델 재료로 활용하기 좋은 학습 데이터이다. 하지만 온라인 특성상 노이즈가 많이 포함되어 있기 때문에 학습에 직접 활용하기가 어렵다. 본 논문에서는 사용자 입력오류가 다수 포함된 문장에서의 한글 오류 보정을 위한 sequence-to-sequence Denoising Autoencoder 모델을 제안한다.

  • PDF

딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화 (Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning)

  • 김명미
    • 한국전자통신학회논문지
    • /
    • v.15 no.4
    • /
    • pp.725-732
    • /
    • 2020
  • 본 논문은 소외계층 아동의 운동학습프로그램에서 체력 활동 중 나를 잘 따른다(0-9), 마음의 결정을 내리는데 많은 시간이 걸린다(0-9), 맥빠진(0-9) 등을 변수로 사용하여 '성별', '체육교실', 나이의 '상중하'를 분류하고 스포츠 재활치료를 통한 자아 탄력(ego-resiliency)과 자아 통제(self-control)의 변화를 관찰하여 정신 건강 변화를 알아본다. 이를 위해 취득한 데이터를 병합하고 Label encoder와 One-hot encoding을 사용하여 숫자의 크고 작음의 특성을 제거한 후 MLP, SVM, Dicesion tree, RNN, LSTM의 각각의 알고리즘을 적용하여 성능을 평가하기 위해 Train, Test 데이터를 75%, 25% 스플릿 한 뒤 Train 데이터로 알고리즘을 학습하고 Test 데이터로 알고리즘의 정확성을 측정한다. 측정 결과 성별에서는 LSTM, 체육 교실은 MLP와 LSTM, 나이는 SVM이 가장 우수한 결과를 보임을 확인하였다.