• Title, Summary, Keyword: Multi-layer coupled line

Search Result 12, Processing Time 0.034 seconds

Design and fabrication of PSK carrier recovery circuit using multi-layer coupled line (다층형 결합 선로를 이용한 반송파 복원 회로 설계 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2039-2044
    • /
    • 2009
  • The PSK carrier signal recovery circuit using multi-layer coupled line was analyzed and designed. The fabricated carrier recovery 6 port element with multi-layer coupled line structure gets the simple architecture. It is possible to implement the carrier signal recovery circuit of the same structure with the multi-layer six port phase correlator of the direct receiver front-end. Based on the analysis of RML carrier recovery circuit using the multi-layer coupled line 6-port phase correlator, the multi-layer coupled line carrier signal recovery structure for multi-mode coherent demodulation was proposed. The fabricated multi-layer coupled line carrier signal recovery circuit for quadrature phase shift-keying shows a good carrier signal characteristic with a constant phase and phase error below ${\pm}3o$.

Six-port direct conversion receiver front-end with carrier recovery circuit and phase shifter using multi-layer coupled line (다층형 결합 선로를 이용한 반송파복원기와 위상 변위기를 갖는 6-단자 직접 변환 수신 전처리부)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2267-2272
    • /
    • 2009
  • The six-port direct conversion receiver front-end that is comprised of a carrier recovery and a phase shifter, which gets the same structure with six-port phase correlator using the multi-layer coupled line, was designed and fabricated in this paper. The six-port element that is comprised of the power divider and the hybrid coupler is designed by multi-layer coupled line structure. The multi-coupled structure is utilized as the basic structure in receiver phase correlator, carrier recovery circuit and phase shifter. The receiver front-end with the same multi-layer coupled line structure for the receiver elements shows the simple structure and no difficulty in integration. The fabricated multi-layer coupled six-port receiver front-end re-generates the carrier signal with a constant phase and demodulates the PSK transmission signal.

Analysis of Symmetric and Asymmetric Multiple Coupled Line on the Multi-layer Substrate (다층 기판위의 대칭 및 비대칭의 다중 결합선로에 대한 해석)

  • Kim, Yoonsuk;Kim, Minsu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.16-22
    • /
    • 2013
  • A general characterization procedure based on the extraction of a 2n-port admittance matrix corresponding to n uniform coupled lines on the multi-layered substrate using the Finite-Difference Time-Domain (FDTD) technique is presented. In this paper, the frequency-dependent normal mode parameters are obtained from the 2n-port admittance matrix to analyze multi-layered asymmetric coupled line structure, which in turn provides the frequency-dependent propagation constant, effective dielectric constant, and line-mode characteristic impedances. To illustrate the technique, several practical coupled line structures on multi-layered substrate have been simulated. Especially, embedded conductor structures have been simulated. Comparisons with Spectral Domain Method are given, and their results agree well. It is shown that the FDTD based time domain characterization procedure is an excellent broadband simulation tool for the design of multiconductor coupled lines on multilayered PCBs as well as thick or thin hybrid structures.

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.

Miniature Multilayer LTCC Bandpass Filter with Attenuation poles (감쇄극을 갖는 초소형 적층 LTCC 대역통과 필터)

  • Lee, Y.S.;Song, H.S.;Bang, K.S.;Kim, J.C.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.751-755
    • /
    • 2003
  • In this paper, We proposed compact multi-layer LTCC (Low Temperature Cofired Ceramic) bandpass filter for Bluetooth module. A ${\lambda}/4$ coupled stripline resonators are designed, which composed of coupled strip-line section and loading capacitance. This resonator with a loading capacitor has slow-wave characteristics. Due to the slow-wave effect of the proposed resonator, it is possible to design and fabricate a compact bandpass filter with a wide upper stop band. Attenuation poles in the lower stop band are achieved using controlling of electro-magnetic coupling between resonators. Using multi-layer LTCC technology, we designed and fabricated band pass filter with a finite attenuation pole and wide upper stopband. The overall size of the filter is $1.2{\times}2.0{\times}1.0mm^3$.

  • PDF

A 2012 Size Multilayer LTCC BPE for 2.4 GHz Band (2.4 GHz 대역 2012사이즈 적층 LTCC 대역통과 필터의 설계 및 제작)

  • 이영신;송희석;박종철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2003
  • A very small size 2.4 GHz ISM band BPF(Band Pass Filter) is realized using LTCC Multi-layer technology. Proposed design method enables to achieve BPF size $2.0\times1.2\times0.8mm^3$. A $lambda/4$ resonator with shunt-to-ground loaded capacitor is used to shorten resonator length, achieving higher quality factor. Also this resonator enables BPF to improve out-of-band rejection. Coupling coefficients between coupled strip-line resonators and external quality factor (Qe) of a resonator are derived and applied to the filter design. The measured results show good agreement with simulated data.

  • PDF

Novel Lumped Element Backward Directional Couplers Based on the Parallel Coupled-Line Theory (평행 결합선로 이론에 근거한 새로운 집중 소자형 방향성 결합기)

  • 박준석;송택영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.10
    • /
    • pp.1036-1043
    • /
    • 2003
  • In this paper, novel lumped equivalent circuits for a conventional parallel directional coupler are proposed. This novel equivalent circuits only have self inductance and self capacitance, so we can design exact lumped equivalent circuit. The equivalent circuit and design formula for the presented lumped element coupler is derived based on the even- and odd-mode properties of a parallel-coupled line. By using the derived design formula, we have designed the 3 dB and 10 dB lumped element directional couplers at the center frequency of 100 MHz and 2 GHz, respectively a chip type directional coupler has been designed with multilayer configurations by employing commercial EM simulator. Designed chip-type directional couplers have a 3 dB-coupling value at the center frequency of 2 GHz and fabricated lumped directional coupler on fr4 organic substrate has a 3 dB, 10 dB-coupling values at the center frequency of 100 MHz. Excellent agreements between simulation results and measurement results on the designed directional couplers show the validity of this paper. Furthermore, in order to adapt to multi-layer process such as Low Temperature Cofired Ceramic (LTCC), chip-type lumped element couplers have been designed by using this method.

Design of a Bandpass Filter using Two Layer Microstrip Structure (두 층 마이크로스트립 구조를 이용한 대역통과 여파기 설계)

  • 천동완;박정훈;신철재
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.3
    • /
    • pp.18-24
    • /
    • 2003
  • The resonator using two layer microstrip structure was proposed and the bandpass filter was designed using this resonator in this paper. The proposed resonator structure is constructed by placing a U-shape of resonator in the first layer and then placing a broadside coupling strip in the second layer just above of the U-shape of resonator's edge part. Because these structure has various design parameters than general single layer coupled line structure, filter design is more flexible. In this paper, the narrow band filter was designed using multi-layer structure that had been applied to broadband filter because it's high coupling nature. The filter was designed to have 4MHz center frequency and 3 % fractional bandwidth, and finally confirmed that can be realizable narrow band filter by using multi-layer structure through fabrication and measurement.

A constant angle excavation control of excavator's attachment using neural network (신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

A Design of 3dB Coupler with Multi Layer Structure Using Arbitrary Termination Impedance for High Power Amplifier (임의의 종단 임피던스를 갖는 고출력 증폭기용 다층 구조형 3dB 결합기 설계)

  • Oh, Jun-Seok;Ahn, Dal
    • 한국정보기술학회논문지
    • /
    • v.15 no.8
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we propose a 3dB coupler with arbitrarily terminated port impedance, which is fabricated on LTCC substrate to minimize power coupling loss of high power amplifier at 1 GHz band. The proposed one is implemented with input port of $50{\Omega}$, isolation port of $50{\Omega}$ and output port of $25{\Omega}$, and the additional feeding line is fabricated for port impedance matching of output port during measurement. In addition, impedance matching line between coupled line and two output ports are implemented in meander line shape, leading to size reduction of 65% as compared to the original coupler size. The proposed coupler showed excellent the reflection coefficient (S11) and the isolation coefficient (S41) of -27.21dB and -18.70dB at 1GHz respectively, and the output result (S21 and S31) were distributed by -3.55dB and -3.68dB. The proposed 3dB coupler in this paper is expected to be used in low-loss high power amplifiers in the future because of the different port impedance between input and output.