• Title, Summary, Keyword: Multipath Routing

Search Result 116, Processing Time 0.039 seconds

Interactive Multipath Routing Protocol for Improving the Routing Performance in Wireless Sensor Networks

  • Jung, Kwansoo
    • Journal of the Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.79-90
    • /
    • 2015
  • Multipath routing technique is recognized as one of the effective approaches to improve the reliability of data forwarding. However, the traditional multipath routing focuses only on how many paths are needed to ensure a desired reliability. For this purpose, the protocols construct additional paths and thus cause significant energy consumption. These problems have motivated the study for the energy-efficient and reliable data forwarding. Thus, this paper proposes an energy-efficient concurrent multipath routing protocol with a small number of paths based on interaction between paths. The interaction between paths helps to reinforce the multipath reliability by making efficient use of resources. The protocol selects several nodes located in the radio overlapped area between a pair of paths as bridge nodes for the path-interaction. In order to operate the bridge node efficiently, when the transmission failure has detected by overhearing at each path, it performs recovery transmission to recover the path failure. Simulation results show that proposed protocol is superior to the existing multipath protocols in terms of energy consumption and delivery reliability.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

Candidate Path Selection Method for TCP Performance Improvement in Fixed Robust Routing

  • Fukushima, Yukinobu;Matsumura, Takashi;Urushibara, Kazutaka;Yokohira, Tokumi
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.445-453
    • /
    • 2016
  • Fixed robust routing is attracting attention as routing that achieves high robustness against changes in traffic patterns without conducting traffic measurement and performing dynamic route changes. Fixed robust routing minimizes the worst-case maximum link load by distributing traffic of every source-destination (s-d) router pair onto multiple candidate paths (multipath routing). Multipath routing, however, can result in performance degradation of Transmission Control Protocol (TCP) because of frequent out-of-order packet arrivals. In this paper, we first investigate the influence of multipath routing on TCP performance under fixed robust routing with a simulation using ns-2. The simulation results clarify that TCP throughput greatly degrades with multipath routing. We next propose a candidate path selection method to improve TCP throughput while suppressing the worst-case maximum link load to less than the allowed level under fixed robust routing. The method selects a single candidate path for each of a predetermined ratio of s-d router pairs in order to avoid TCP performance degradation, and it selects multiple candidate paths for each of the other router pairs in order to suppress the worst-case maximum link load. Numerical examples show that, provided the worst-case maximum link load is less than 1.0, our proposed method achieves about six times the TCP throughput as the original fixed robust routing.

Partial Multipath Routing Scheme to avoid interpath interference in Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크에서 경로간 간섭회피를 위한 부분 다중경로 라우팅 기법)

  • Lee, Kang-Gun;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1917-1924
    • /
    • 2015
  • Efficient routing algorithm is required to transmit data from source to destination by multi-hop transmission in wireless sensor networks. In the multi-hop transmission, multipath routing can be one of the solutions to cope with the traffic congestion and unstable link condition. In this paper, we propose partial multipath routing which does not establish a secondary full routing path but a partial multipath to complement some poor links, and it can enable stable data transmission and reduce the number of nodes in routing path and the required total power compared with conventional multipath routing.

Multipath Routing Protocol based on Multi-Rate Transmission in Mobile Ad Hoc Networks (이동 에드혹 네트워크에서 다중전송률전송에 기반한 다중경로 라우팅 기법)

  • Lee, Kang-Gun;Park, Hyung-Kun
    • The Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.236-241
    • /
    • 2014
  • In a mobile ad hoc networks, multi-hop transmission is used to transfer data from source node to destination node and the routing protocol is the one of the important technical issues. The links between nodes can be unstable due to the changes of node location and channel conditions, and it can induce link error. To solve this problem, multipath routing was proposed. Multipath routing can reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing technique in the multi-rate MANET. The proposed multipath routing can avoid interference without the knowledge of node location. Simulation results show that the proposed multipath routing can reduce transmission delay and error.

Disjointed Multipath using Energy Efficient Face Routing in Wireless Sensor Networks (무선 센서 망에서 에너지 효율적인 페이스 라우팅을 활용한 분리된 다중 경로 방안)

  • Cho, Hyunchong;Kim, Cheonyong;Kim, Sangdae;Oh, Seungmin;Kim, Sang-Ha
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.2
    • /
    • pp.116-121
    • /
    • 2017
  • In wireless sensor networks, the multipath prefers energy efficient routing method due to the characteristic of low-power sensor which uses geographic method to transmit data packet through information of the neighbor nodes. However, when multipath meets the routing fail area called hole area, path overlap problem can occur, resulting in failed maintenance of disjoint multipath. To solve this problem, multipath research studies have been performed to exploit the modeling and detouring method in routing fail area by keeping the disjoint multipath. However, in an energy point of view, additional method like modeling can lead to a lot of energy consumption of sensor node. Moreover, lots of energy consumption of sensor node can shorten the life span of sensor network. In this study, we proposed an energy efficient geographic routing by keeping the disjoint multipath in routing fail area. The proposed scheme exploited the face routing using the geographic recovery method without additional method like modeling.

Multipath Routing Based on Opportunistic Routing for Improving End-to-end Reliability in Large-scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 종단 간 전송 성공률 향상을 위한 기회적 라우팅 기반 다중 경로 전송 방안)

  • Kim, SangDae;Kim, KyongHoon;Kim, Ki-Il
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.4
    • /
    • pp.177-186
    • /
    • 2019
  • In wireless sensor networks, the transmission success ratio would be decreased when the scale of the WSNs increased. To defeat this problem, we propose a multipath routing based on opportunistic routing for improving end-to-end reliability in large-scale wireless sensor networks. The proposed scheme exploits the advantages of existing opportunistic routing and achieves high end-to-end success ratio by branching like a multipath routing through local decision without information of the whole network. As a result of the simulation result, the proposed scheme shows a similar or higher end-to-end transmission success ratio and less energy consumption rather than the existing scheme.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

A Maximally Disjoint Multipath Routing Protocol Based on AODV in Mobile Ad Hoc Networks (모바일 애드혹 네트워크에서의 AODV 기반 치대 비중첩 다중경로 라우팅 프로토콜)

  • Kim Jungtae;Moh Sangman;Chung Ilyong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.3
    • /
    • pp.429-436
    • /
    • 2005
  • A mobile ad hoc network (MANET) is a collection of mobile nodes without any fixed infrastructure or my form of centralized administration such as access points and base stations. The ad hoc on-demand distance vector routing (AODV) protocol is an on-demand routing protocol for MANETs, which is one of the Internet-Drafts submitted to the Internet engineering task force (IETF) MANET working group. This paper proposes a new multipath routing protocol called maximally disjoint multipath AODV (MDAODV), which exploits maximally node- and link-disjoint paths and outperforms the conventional multipath protocol based on AODV as well as the basic AODV protocol. The key idea is to extend only route request (RREQ) message by adding source routing information and to make the destination node select two paths from multiple RREQs received for a predetermined time period. Compared to the conventional multipath routing protocol, the proposed MDAODV provides more reliable and robust routing paths and higher performance. It also makes the destination node determine the maximally node- and link-disjoint paths, reducing the overhead incurred at intermediate nodes. Our extensive simulation study shows that the proposed MDAODV outperforms the conventional multipath routing protocol based on AODV in terms of packet delivery ratio and average end-to-end delay, and reduces routing overhead.

An Energy Efficient Explicit Disjoint Multipath Routing in Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율적인 명시적 분리형 다중경로 라우팅 방법)

  • Oh, Hyun-Woo;Jang, Jong-Hyun;Moon, Kyeong-Deok;Kim, Sang-Ha
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1160-1170
    • /
    • 2010
  • Existing multipath routing mechanism has much overhead to maintain the state of nodes on the multipath route and does not guarantees completely disjoint multipath construction from source to destination. In this paper, we propose an Explicit Disjoint Multipath (EDM) routing algorithm to enhance energy efficiency through removing the flooding mechanism for route discovery process, minimizing the number of nodes participating in route update and balancing the traffic load for entire network. EDM constructs logical pipelines which can create disjoint multipaths in logical way. Then it physically performs anchor node based geographic routing along the logical pipeline in order to build multipath to the destination. EDM can provide the distribution effect of traffic load over the network, help to balance the energy consumption and therefore extend the network lifetime.