• Title, Summary, Keyword: Multivariate statistical process control (MSPC)

Search Result 5, Processing Time 0.027 seconds

Copula modelling for multivariate statistical process control: a review

  • Busababodhin, Piyapatr;Amphanthong, Pimpan
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.497-515
    • /
    • 2016
  • Modern processes often monitor more than one quality characteristic that are referred to as multivariate statistical process control (MSPC) procedures. The MSPC is the most rapidly developing sector of statistical process control and increases interest in the simultaneous inspection of several related quality characteristics. Most multivariate detection procedures based on a multi-normality assumptions are independent, but there are many processes that assume non-normality and correlation. Many multivariate control charts have a lack of related joint distribution. Copulas are tool to construct multivariate modelling and formalizing the dependence structure between random variables and applied in several fields. From copula literature review, there are a few copula to apply in MSPC that have multivariate control charts, and represent a successful tool to identify an out-of-control process. This paper presents various types of copulas modelling for the multivariate control chart. The performance measures of the control chart are the average run length (ARL) and the average number of observations to signal (ANOS). Furthermore, a Monte Carlo simulation is shown when the observations were from an exponential distribution.

Multivariate process control procedure using a decision tree learning technique (의사결정나무를 이용한 다변량 공정관리 절차)

  • Jung, Kwang Young;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.639-652
    • /
    • 2015
  • In today's manufacturing environment, the process data can be easily measured and transferred to a computer for analysis in a real-time mode. As a result, it is possible to monitor several correlated quality variables simultaneously. Various multivariate statistical process control (MSPC) procedures have been presented to detect an out-of-control event. Although the classical MSPC procedures give the out-of-control signal, it is difficult to determine which variable has caused the signal. In order to solve this problem, data mining and machine learning techniques can be considered. In this paper, we applied the technique of decision tree learning to the MSPC, and we did simulation for MSPC procedures to monitor the bivariate normal process means. The results of simulation show that the overall performance of the MSPC procedure using decision tree learning technique is similar for several values of correlation coefficient, and the accurate classification rates for out-of-control are different depending on the values of correlation coefficient and the shift magnitude. The introduced procedure has the advantage that it provides the information about assignable causes, which can be required by practitioners.

Development of an Intelligent Operation Support System (지능적 조업 지원 시스템의 개발)

  • 이영학;이동희;한종훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.391-391
    • /
    • 2000
  • Manufacturing process generally exhibits major or minor variations due to deviation of raw materials, equipment degradation, controller malfunction, and so on. Extensive research based on multivariate statistical process control has been done to monitor the unstable states and indicate a corrective action. A prototype of intelligent operation support system ("ISYS-MSPC") has been developed as a tool that supports the enhanced operation to guarantee the high productivity and a uniform high quality product. This system has been applied to the industrial batch and continuous processes and its performance has been validated .

  • PDF

The Use of Local Outlier Factor(LOF) for Improving Performance of Independent Component Analysis(ICA) based Statistical Process Control(SPC) (LOF를 이용한 ICA 기반 통계적 공정관리의 성능 개선 방법론)

  • Lee, Jae-Shin;Kang, Bok-Young;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.1
    • /
    • pp.39-55
    • /
    • 2011
  • Process monitoring has been emphasized for the monitoring of complex system such as chemical processing industries to achieve the efficiency enhancement, quality management, safety improvement. Recently, ICA (Independent Component Analysis) based MSPC (Multivariate Statistical Process Control) was widely used in process monitoring approaches. Moreover, DICA (Dynamic ICA) has been introduced to consider the system dynamics. However, the existing approaches show the limitation that their performances are strongly dependent on the statistical distributions of control variables. To improve the limitation, we propose a novel approach for process monitoring by integrating DICA and LOF (Local Outlier Factor). In this paper, we aim to improve the fault detection rate with the proposed method. LOF detects local outliers by using density of surrounding space so that its performance is regardless of data distribution. Therefore, the proposed method not only can consider the system dynamics but can also assure robust performance regardless of the statistical distributions of control variables. Comparison experiments were conducted on the widely used benchmark dataset, Tennessee Eastman process (TE process), and showed the improved performance than existing approaches.


  • Yoo, Chang-Kyoo;Vanrolleghem, Peter A.;Lee, In-Beum
    • Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.63-76
    • /
    • 2006
  • Multivariate analysis and batch monitoring on a pilot-scale sequencing batch reactor (SBR) are described for integrated wastewater treatment management system, where a batchwise multiway independent component analysis method (MICA) are used to extract meaningful hidden information from non-Gaussian wastewater treatment data. Three-way batch data of SBR are unfolded batch-wisely, and then a non-Gaussian multivariate monitoring method is used to capture the non-Gaussian characteristics of normal batches in biological wastewater treatment plant. It is successfully applied to an 80L SBR for biological wastewater treatment, which is characterized by a variety of error sources with non-Gaussian characteristics. The batchwise multivariate monitoring results of a pilot-scale SBR for integrated wastewater treatment management system showed more powerful monitoring performance on a WWTP application than the conventional method since it can extract non-Gaussian source signals which are independent and cross-correlation of variables.