• Title, Summary, Keyword: Ni-Zn-Cu ferrite

Search Result 97, Processing Time 0.055 seconds

The effect of Cu substitution on the electromagnetic wave absorbing properties of Ni-Zn ferrites (Ni-Zn 페라이트의 Cu 치환에 의한 전자파흡수 특성)

  • Lee, Seon-Hag;Oh, Young-Woo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.1652-1654
    • /
    • 2000
  • 고상반응법을 이용하여 $Ni_{0.6-x}Cu_{x}Zn_{0.4}Fe_{2}O_4$(x=0, 0.1, 0.2, 0.3) ferrite 분말을 제조하고 1200$^{\circ}C$에서 열처리하여 Cu 첨가에 따른 입자변화와 전자파흡수 특성과의 관계를 조사하였다. Ni를 Cu로 0.1 mol 치환했을 때 까지는 포화자화 및 전자파흡수능이 치환하지 않았을 때와 거의 비슷하였으나, 그 이상 첨 가시는 직선적으로 감소하였다.

  • PDF

Power Loss and Electro-Magnetic Characteristics of Ni-Cu-Zn Ferrites (Ni-Cu-Zn페라이트의 損失과 磁性 特性)

  • Otsuki, E.;Kim, Jeong-Su
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • The power loss analysis was carried out for Ni-Cu-Zn ferrite sample with different content of NiO and ZnO. The power loss, Pcv decreases monotonically with increasing temperature and attains to a certain value at around 100~120 degrees Celsius. The frequency dependence of Pcv can be explained by Pcv~f$^n$, and n is independent of the frequency, f up to 1 MHz. The Pcv decreases with an increase in ZnO/NiO. The Pcv was separated to hysteresis loss(Ph) and residual loss(Pcv-Ph). The temperature characteristics and compositional dependence of Pcv can be attributed to the Ph, while Pcv-Ph is not affected by both temperature and ZnO/NiO. By analyzing temperature and composition dependence of Ph and initial permeability, ${\mu}_i$ like following equations could be formularized. ${\mu}_i{\mu}_0=I_s^2/(K_I+b{\sigma}_0{\lambda}_s)$ Wh=13.5(I$_s^2/{\mu}_i{\mu}_0)$ Where ${\mu}_0$ is permeability of vacuum, I$_s$ is saturation magnetization, K$_I$ is anisotropy constant, $s_0$ is internal heterogeneous stress, ${\lambda}_s$ is magnetostriction constant, b is unknown constant, and Wh is hysteresis loss per one cycle of excitation (Ph=Wh${\times}$f). Steinmetz constant of Ni-Cu-Zn ferrite, m=1.64~2.2 is smaller than that of Mn-Zn ferrites, which suggests the difference of loss mechanisms between these materials.

Effect of Constituent Ration NiO, CuO and B-Bi-Zn Addition on the Permeabilities of Hexagonal-ferrite (NiO, CuO 조성비와 B-Bi-Zn 첨가가 Hexagonal-Ferrite의 투자율에 미치는 영향)

  • Jeong, Seung-U;Kim, Tae-Won;Jeon, Seok-Tae;Myeong, Tae-Ho;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.430-436
    • /
    • 2000
  • In this paper, we have studied the effect of constituent ratio NiO, CuO and doped with B-Bi-Zn on proper-ties(microstructure, density, shrinkage, permeability as a function of frequency, etc.) of hexagonal-ferrite for high fre- quency chip-inductor material about several GHz. The permeability were analyzed by impedance analyzer(100 kHz∼ 40 MHz) and network analyzed(30 MHz∼3 GHz). As a result of the characteristics. the B-Bi-Zn glass ceramic was used to lower the sintering temperature for additive as function of frequency from 100kHz to 1.8 GHz showed con-stant tends. The maximum imaginary value of complex permeability was observed near the resonance frequency of 2 GHz.

  • PDF

A Study of Synthesis of NiCuZn-Ferrite Sintering in Low Temperature by Metal Nitrates and its Electromagnetic Property

  • Kim, Chul Won;Koh, Jae Gui
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.29-39
    • /
    • 2002
  • The initial NiCuZn synthetic ferrite were acquired from thermally decomposing the metal nitrates $Fe(NO_3)_39H_2O, Zn(NO_3)_26H_2O, Ni(NO_3)_26H_2O, and Cu(NO_3)_23H_2O$ at $150^circ{C}$ for 24 hours, and then we calcined the synthetic powder at $500^circ{C}$, pulverized each of those for 3, 6, 9, 12, and 15 hours in a steel ball mill, sintered each at $700^circ{C}$ to $1,000^circ{C}$ for 1 hour, and thus studied their microstructures and electromagnetic properties. We could make the initial specimens chemically bonded in liquidity at a low-temperature $150^circ{C}$, by using the low melting points less than $200^circ{C}$ of the metal nitrates instead of the mechanical ball-mill pulverization, then narrow a distance between the particles into a molecular one, and thus lower the reaction point of sintering by at least $200^circ{C}$ to $300^circ{C}$. Their initial permeability was 50 to 400 and their maximum magnetic induction density and coercive force, 2,400 G and 0.3 Oe to 0.5 Oe respectively, which was similar to those of NiZnCu ferrite synthesized in the conventional process. In the graph of initial permeability by frequencies, a $180^circ{C}$ rotation of the magnetic domains which appears in a broad band of micro-wave before and after the resonance frequency, could be perceived.