• Title/Summary/Keyword: Non-point Pollution Source

Search Result 43, Processing Time 0.102 seconds

A Study for the Selection Method of Control Area of Nonpoint Pollution Source (비점오염원 관리지역의 선정 기법에 관한 연구)

  • Park, Sanghyun;Jeong, Woohyeok;Yi, Sangjin;Lim, Bongsu
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.761-767
    • /
    • 2010
  • This study introduces a model of territorial analysis on Chungcheongnam-do Nonsan-chun valley area, which gives an example of a method of selecting the management area for non-point pollution source from land use to help eliminate its source. High discharge load per unit area signify high level of land ratio with high level of basic unit of development load (including factory sites, school sites, roadways), which mean that there are a significant level of urbanization. It is these areas with the examination of the water quality of the nearby river that should be considered as the management area for non-point pollution source. Thus, the management area for non-point pollution source should be sought in areas with high discharge load per unit area and high density of water pollution area. When level of drainage is high the pollution density level is relatively lower, and when the level of drainage is low the density level is relatively higher. The level of pollution from non-point pollution source is much lower with more water flowing through. The possible non-point pollution source areas that were selected with these standards were then examined with the distance from the river, the slope angle, land usage, elevation, BOD discharge density load, T-N discharge density load, T-P discharge density load, and were given a level one through five. Out of the possible areas Nonsan-si Yeonmu-eup Anshim-li was the densest area, and it was given level one. The level one area should be examined further with the field analysis to be selected as the actual management area for non-point pollution source.

An Analysis of First Flush Phenomenon of Non-point Source Pollution during Rainfall-Runoff Events from Impervious Area (불투수성 지역의 강우유출수에 대한 비점오염물질의 초기유출현상 분석)

  • Ahn, Tae-Ung;Bum, Bong-Su;Kim, Tae-Hoon;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.643-653
    • /
    • 2013
  • In this study, trend analysis was performed by various runoff analysis method of Non-point Pollution Source(NPS) at the impervious area. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength and it appeared that first flush phenomenon occurs often if rainfall strength acts largely. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. As the result of calculating Decrease Rate (DR) by first flush of non-point pollution source, it is judged that it is important to prepare the measure against the pollutants about initial rain and it is necessary to calculate the capacity of non-point pollution source processing facilities regarding that now that the non-point pollution source integrated at impervious area showed the characteristics that are flowed out in high concentration by initial rain in case of non-rainfall considering the characteristics of non-point pollution source at impervious area. When taking 50% of non-point pollution source as the standard for decrease rate that was evaluated previously, it appeared as 15~60 min in case of TSS and it appeared as 30~90 min in case of organic compound, but the characteristic whose decrease rate is below 50% also appeared even till rainfall-runoff ends. Based on that, it is judged that it could be used as the reference when designing the structural BMPs facilities later.

A Study on Landscape Improvement of Cut-Slopes and Management of Non-Point Pollution Using Coir-Blocks (코이어블록(Coir-Blocks)을 이용한 절토사면의 경관개선 및 비점오염원 관리에 관한 연구)

  • Lee, Kwan-Choon;Park, Yool-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.5
    • /
    • pp.27-36
    • /
    • 2015
  • This study was conducted to grasp the effect of afforestation of cut slope using coir blocks on the improvement of scenery and the management of non point pollution source. Total four experimental tanks such as general soil slope, coir blocks, installation slope, slope refilling the inside of coir blocks slope with pebble, slope refilling the inside of coir blocks with soil and plant were installed, pollution source water was supplied and the possibility of reduction management of non point pollution source was analyzed at four items of COD, SS, T-N, T-P and main results drawn from this study are as follows. In conclusion, biodegradable materials like coir blocks and soil and plant layers are judged to be helpful in reduction management of non point pollution source inflowing to water space from land area. Thus, the reduction of non point pollution source occurring at land area is thought to be fully controlled at the cut slope, the space prior to inflowing to water ecological space like a stream or a swamp area.

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

Effect of Retention Time on the Removal Efficiency in Grassed Swale (체류시간이 식생수로 저감효율에 미치는 영향)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.371-381
    • /
    • 2014
  • Recently the water quality management policy gives priority to management the point source. Non-point pollution source is difficult to comprehend because those don't have certain outflow point and emission. There are many development and research about BMPs for manage the Non-point pollution source. Various methods of removal efficiency are presented for assessment of Best Management Practices (BMPs). In this study, retention time have effect on removal efficiency based on monitoring results of Grassed Swale is studied. Also, Compare a difference according to various methods of Grassed Swale removal efficiency. The result of removal efficiency analysis depending on retention time of Grassed Swale, removal efficiency is higher as retention time increases. To obtain a stable removal efficiency of Grassed Swale, retention time of Grassed Swale should be secure.

Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation (식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석)

  • Ku, Soo-Hwan;Im, Jiyeol;Oa, Seong-Wook;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

Continuous Treatment System of Detention Pond, Wetland and Ecological Revetment (저류지, 습지여상, 생태호안이 연계된 수처리 시스템)

  • Seo, Dae Seuk;Kim, Bong Kyun;Park, Jun Seok;Son, Seung Wook;Oh, Jong Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.651-651
    • /
    • 2015
  • The Because reduction facilities of existing non-point pollution source weren't balanced with each element technologies, most of case were what damaged scene nature of river, neutralized pollution sources and reduction effect. Therefore it's necessary to find a solution by integrating the operation system. Based on the comparative analysis that we have ran, we examined the capacity at individual operation's water purification and linked the treatment to detention pond, wetland and revetment.

  • PDF

Effects of Grassed Swale Lengths on Reduction Efficiencies of Non-point Source Pollutants (식생수로 길이가 비점오염물질 저감효율에 미치는 영향)

  • Paek, Seoungbong;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.387-396
    • /
    • 2013
  • Non-point pollution source is difficult to control due to uncertain outflow path and emission. So, There are many development and research to Best Management Practices(BMP) established to manage the Non-point pollution source. Besides, various methods of estimated efficiency to exact assessment of BMP is presented. In this study, the impact about length of Grassed Swale on reduction efficiency based on monitoring results of Grassed Swale by length is studied. By estimating Grassed Swale reduction efficiency in a variety of methods, the difference between the methods of estimated efficiency was compared with those that. Estimated efficiency method using ER, SOL, ROL, ROF, SOLF, and ROLF methods is analyzed. EMC analysis result is high inflow and outflow concentration distinction organic compound for nutritive salts The result of efficiency analysis along Grassed Swale length sharply increases in a Grassed Swale inlet. After this increase, the efficiency gradually decreases. This is expected that cistern installed in the end of the front. To obtain a stable reduction efficiency of Grassed Swale, minimum length 30m of Grassed Swale should be enough. Also, in order to efficiently and economically design Grassed Swale, the researches on length of Grassed Swale are needed rather than simple analysis of efficiency.

Analysis of Non-point Pollution Source Reduction by Permeable Pavement (투수성 포장에 의한 비점오염원 저감 효과 분석)

  • Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.49-62
    • /
    • 2014
  • As the Urban area grows and more land is developed both within the city and in surrounding areas, hydrologic functions of the natural water cycle are altered. Urbanization creates impervious areas that negatively impact stormwater runoff characteristics. these changes to the natural hydrologic cycle result in the increased flooding, decreased groundwater recharge, increased urban heat island effects. Finally, the land use and other activities result in accumulation and washoff of pollutants from surface, resulting in water quality degradation. Therefore, in this study, evaluating and quantitative analysis of the percolation effect through infiltration experiment of permeable pavement, which is one of the ways that can reduce the problem of the dry stream. Also the SWMM model is used to study the effect of the hydrologic cycle for permeable pavement block contribution.

A Study on The Non-Point Source Pollutant Load Routing Method (비점원 오염부하량 산정에 관한 연구)

  • Kim, Young-Seob;Lee, Gwan-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • After execute quantitative analysis that choose station and compose floodgate quality of water net and use floodgate data and quality of water data analysis target Sign of the cock as 1 dimension access for Non-point pollution source pollution and estimate of Gaeuncheon's at Kyongsangbukdo report to the Throne in this research, presented parameter conclusion notation model (AGNPS) in real condition of our agricultural area through comparison with spot value and result is as following in reply. With result observation and analysis result of the AGNPS model the comparison which it will pay from the hazard which it analyzes 2005, the rainfall thought which is used in the analysis to select 8 heavy rain thoughts 2005 July - is data until of September. Actual amount of rainfall 6.0~195.0 mm one time the antecedent precipitation showed API5 case 0.0~507.0mm and were observed peak flows (Qpeak) each from the P-1 $0.026m^3/sec{\sim}9.265m^3/sec$, from the P-2 $0.010m^3/sec-2.747m^3/sec$ and from the P-3c $0.064m^3/sec-13.482m^3/sec$ to show. Also amendment AMC condition it will be cool and it uses and the AGNPS model conference the result which it occurs, analysis and regression analysis of actual flow for as 0.992 very the possibility of getting the result which is good there was a decisive coefficient which is cool. But the gun is (T-P) with the total nitrogen (T-N) decisive coefficient each as 0.794 and 0.849 the presumption which is reliability generally will pay and with the fact that it will be the possibility of getting it is judged.

  • PDF