• Title, Summary, Keyword: Offshore Pipeline

Search Result 71, Processing Time 0.041 seconds

Supplementation of Regulation on the Offshore Oil Pipeline for Maintenance (해저 송유배관 유지관리를 위한 기준 보완 제시)

  • Kang, Chan-Seong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.70-81
    • /
    • 2012
  • The study aims to supplement facility management plan and safety regulations & standard of oil pipeline by searching and reviewing related regulation & standard inside and outside of the country. Korean regulation & standard is reviewed based on harbor and fishery design standard of the ministry of maritime affairs and fisheries, general technology standard of oil pipeline safety regulation, gas excavation construction and safety maintenance indicator of Korea gas corporation. Global regulation & standard is reviewed based on U.S standard inspection for offshore pipeline and Europe/Mexico standard inspection for offshore pipeline. The contents of offshore pipeline installation is inserted into pipeline sector for objected facilities of safety inspection regulation & standard and, the standard of safety inspection for offshore pipeline is newly presented into pipeline maintenance part of the planning facilities management with its inspection period and method.

  • PDF

Parametric Study of Offshore Pipeline Wall Thickness by DNV-OS-F101, 2010

  • Choi, Han-Suk;Yu, Su-Young;Kang, Dae-Hoon;Kang, Hyo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • DNV-OS-F101 includes the concept development, design, construction, operation,and abandonment of offshore pipeline systems. The main objective of this offshore standard (OS) is to ensure that pipeline systems are safe during the installation and operational period. The pipeline design philosophy also includes public safety and environmental protection. The mechanical wall thickness design of a pipeline shall follow the design objectives and safety philosophy. This new design code includes a very sophisticated design procedure to ensure a safe pipeline, public safety, and environmental protection. This paper presents the results of a parametric study for the wall thickness design of offshore pipelines. A design matrix was developed to cover the many design factors of pipeline integrity, public safety, and environmental protection. Sensitivity analyses of the various parameters were carried out to identify the impacts on offshore pipeline design.

Trend and Review of Corrosion Resistant Alloy (CRA) for Offshore Pipeline Engineering (내식합금 (CRA) 동향 및 해양 파이프라인 설계 적용에 대한 고찰)

  • Yu, Su-Young;Choi, Han-Suk;Lee, Seung-Keon;Kim, Do-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Offshore fields are increasingly important for the development of offshore resources due to the growing energy needs. However, an offshore field for oil and gas production has difficult development conditions, e.g., high temperature, high pressure, sweet/sour compositions of fluids, etc. Corrosion is one of the biggest issues for offshore pipeline engineering. In this study, a Corrosion Resistant Alloy (CRA) pipe for corrosion prevention was investigated through its global demand and trends, and three types of CRA pipelines were introduced with detailed explanations. The usefulness of CRA was also evaluated in comparison to a carbon steel pipeline in terms of the structural strength, cost, and other factors. Offshore pipeline engineering, including mechanical design and verification of the results through an installation analysis based on numerical software, was performed for the carbon steel type and solid CRA type. The results obtained from this study will be useful data for CRA pipeline designers and researchers.

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Analysis of offshore pipeline laid on 3D seabed configuration by Abaqus

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid;Sagharichiha, Mohammad
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.31-40
    • /
    • 2015
  • Three dimensional (3D) non-linear finite element analysis of offshore pipeline is investigated in this work with the help of general purpose software Abaqus. The general algorithm for the finite element approach is introduced. The 3D seabed mesh, limited to a corridor along the pipeline, is extracted from survey data via Fledermous software. Moreover soil bearing capacity and coefficient of frictions, obtained from the field survey report, and are introduced into the finite element model through the interaction module. For a case of study, a 32inch pipeline with API 5L X65 material grade subjected to high pressure and high temperature loading is investigated in more details.

Advanced Offshore Pipelaying Analysis techniques Part 2 : Laybarge Methods (해저 파이프라인 가설 분석 기술)

  • Choe, Han-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.7-19
    • /
    • 1995
  • Various laybarge methods for offshore pipeline installation are introduced. Pipe stresses and strains during the installation are discussed with linear and nonlinear analysis methods. Several operational modes of offshore pipeline installation are described. Computer modelling techniques of the pipeline installation analyses are suggested.

  • PDF

Expansion Spool Design of an Offshore Pipeline by the Slope Deflection Method

  • Choi, Han-Suk;Do, Chang-Ho;Na, Young-Jang
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.1-7
    • /
    • 2010
  • Offshore, sub-sea pipelines that transport oil and gas experience thermal expansion induced by the temperature of the transported medium during operation. The expansion of the pipeline can induce overload and cause damage to offshore platforms or sub-sea structures that are connected to the pipelines. To mitigate and prevent these incidents, expansion spools are installed between offshore, sub-sea pipelines and risers on the platform. This paper presents the results of the study and development of a simplified design method for expansion spools, using the slope deflection method for the purpose of preliminary design or front-end engineering and design (FEED).

A Benchmark Study of Design Codes on Offshore Pipeline Collapse for Ultra-Deepwater

  • Choi Han-Suk
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2006
  • The objective of this paper is to summarize current ultra-deepwater (i.e., up to 3,500 meters water depth) pipeline mechanical design methodologies as part of the limit state design. The standard mechanical design for ultra-deepwater pipelines in the Gulf of Mexico (GOM) is based on API RP 1111. API code also has been used for deepwater projects in west Africa. DNV code OS-F101 was mostly used for deepwater projects in offshore Brazil and Europe. Some pipeline designs in the GOM have started to incorporate parts of the DNV design methodology. A discussion of failure under collapse only and combined loading (i.e. pressure + bending) is presented. The best design criteria are obtained from physical full-scale collapse testing. The comparison of the physical test data and collapse calculations using the DNV and API codes will be presented. It was found that the conservatism still exists in the collapse prediction for ultra-deepwater pipeline using modem design codes such as DNV OS-F101 and API RP 1111.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.