• Title, Summary, Keyword: On-board charger (OBC)

Search Result 26, Processing Time 0.036 seconds

Development of simulation on parallel operation of the On-Board Charger (차량용 OBC 병렬운전 시뮬레이션 개발)

  • Zhu, Helin;Mok, HyungSoo;Choi, Sungho;Park, SungUk;Sung, KiHak
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.225-226
    • /
    • 2018
  • 전기자동차 배터리팩을 충전하기 위한 장치인 차량용 OBC(On-Board Charger)는 AC/DC 컨버터 기능을 담당하는 PFC(Power Factor Correction)와 DC/DC 전력변환 및 전기적 절연을 담당하는 Phase-Shifted Full Bridge Converter를 포함 한다. 현재 시중에 3.3kW급 OBC를 기준으로 규격화되어 생산되고 있지만 전기자동차의 배터리 용량이 날로 증가하고 전기자동차 보급, 사용률이 증가함에 따라 완속충전에 대한 요구가 높아지고 있다. 여기에 전력 인프라 시설 개선과 더불어 6.6kW급 완속충전이 보편화될 수 있게 된다. 차량용 OBC 공급업체에 있어서는 기존의 3.3kW급과 6.6kW급 OBC의 개발 중 어느 쪽에 중심을 둘지 고민에 대한 대안으로 기존의 3.3kW급을 모듈화하여 병렬운전하는 방법으로 6.6kW급 OBC 시장수요에 대응 할 수 있다. 본 논문에서는 3.3kW급 OBC 및 2병렬운전에 관한 시뮬레이션을 개발하고 분석하였다.

  • PDF

Inductor Design Method of DCM Interleaved PFC Circuit for 6.6-kW On-board Charger

  • You, Bong-Gi;Lee, Byoung-Kuk;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2247-2255
    • /
    • 2017
  • Because the on-board charger (OBC) is installed in electric vehicles (EVs), high power density is regarded as a key technology. Among components of the OBC, inductors occupy more than 30% of the total volume. Thus, it is important to reduce the volume and the weight of inductors while maintaining thermal stability. Discontinuous conduction mode (DCM) can satisfy these requirements; however, only a few studies have adopted the DCM operation for OBCs because of the large inductor current ripple. In this paper, a design process is proposed for application of the DCM operation to OBCs. In order to analyze the inductor losses accurately, a numerical formula for the inductor current ripple is deduced based on a detailed analysis. Two inductors are fabricated using several ferrite cores and powder cores taking into consideration the inductor size, inductor losses, and temperature rise. In order to verify the analysis and design process, experimental results are presented that show that the designed inductors satisfy the requirements of the OBCs.

Development of Battery Charger for Electric Vehicle using the LLC Resonant Converter (LLC 공진형 컨버터를 적용한 전기자동차 고압배터리 충전기 개발)

  • Kim, Gyoung-Man;Yoo, Jong-Uk;Kim, Tae-Kwon;Kang, Chan-Ho;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.443-447
    • /
    • 2013
  • This paper deals with LLC resonant converter of on-board charger for electric vehicle charging. Generally, the on-board charger must have a very widely charging voltage, higher efficiency, higher power factor, lower volume and lower weight. For reducing the switching losses, voltage and current stress of the device, the on-board charger is apply the half-bridge LLC resonant converter topology. To have a wide voltage range, it is design the hardware parameters and determine the switching frequency range of the LLC resonant converter. The experimental results show a wide charge voltage.

Development of the Integrated Power Converter for the Environmentally Friendly Vehicle and Validation of the LDC using Battery HILS (친환경 자동차용 통합형 전력변환장치의 개발 및 배터리 HILS를 이용한 LDC 검증에 관한 연구)

  • Kim, Tae-Hoon;Song, Hyun-Sik;Lee, Baek-Haeng;Lee, Chan-Song;Kwon, Cheol-Soon;Jung, Do-Yang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1212-1218
    • /
    • 2014
  • For OBC (On-Board Charger) and LDC (Low DC-DC Converter) used as essential power conversion systems of PHEV (Plug-in Hybrid Electric Vehicle), system performance is required as well as reliability, which is need to protect the vehicle and driver from various faults. While current development processor is sufficient for embodying functions and verifying performance in normal state during development of prototypes for OBC and LDC, there is no clear method of verification for various fault situations that occur in abnormal state and for securing stability of vehicle base, unless verification is performed by mounting on an actual vehicle. In this paper, a CCM (Charger Converter Module) was developed as an integrated structure of OBC and LDC. In addition, diverse fault situations that can occur in vehicles are simulated by a simulator to artificially inject into power conversion system and to test whether it operates properly. Also, HILS (Hardware-in-the-Loop Simulation) is carried out to verify whether LDC is operated properly under power environment of an actual vehicle.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Battery cell-balancing method for on board charger of Electric vehicle (OBC 전원장치의 배터리 셀 밸런싱 충전 기법)

  • Kim, Jun Mo;Eom, Tae Ho;Lee, Jeong;Shin, Min Ho;Won, Chung Yuen
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.141-142
    • /
    • 2016
  • 본 논문에서는 OBC 전원장치를 이용하여 전기 자동차의 배터리를 충전함에 있어 배터리의 셀 밸런싱을 고려한 충전 기법에 대하여 기술한다. 기존의 OBC 전원장치의 경우 배터리의 온도를 무시한 충전기법이 사용되며, 온도특성에 따라 배터리 수명이 달라지는 문제점을 발생시킨다. 따라서 배터리의 셀 밸런싱을 통해 배터리의 온도를 일정하게 유지하여 배터리 수명 연장시킨다.

  • PDF

Design and Control Method of an On-Board Charger using a Hybrid Starter Generator System in Hybrid Electric Vehicles (시동 발전기 시스템을 이용한 탑재형 충전기의 설계 및 제어 방법)

  • Kang, Ho-Sung;Kim, Seok-Min;Lim, Donghwi;Kwak, Raeho;Kim, Kyo-Min;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.466-467
    • /
    • 2018
  • 본 논문은 시동 발전기(Hybrid Starter Generator, HSG) 시스템을 이용한 탑재형 충전기(On Board Charger, OBC)의 설계 및 제어 방법을 제안한다. 일반적으로 하이브리드 자동차(Hybrid Electric Vehicle, HEV)는 인버터 및 발전기로 구성된 HSG 시스템과 전력변환장치를 이용한 배터리 충전 시스템을 포함한다. 본 논문에서는 HSG 시스템에 추가적인 회로를 이용하여 배터리 충전 기능을 수행할 수 있는 OBC의 설계 및 제어 방법을 제안한다. 결과적으로 전력변환장치의 수를 줄여 차량의 내부 공간을 확보하며, 제조 가격을 감소시킬 수 있다. 시뮬레이션을 통해 제안하는 배터리 충전 시스템의 설계 및 제어 방법의 타당성을 검증한다.

  • PDF

Switching Frequency Design of Phase-Shifted Full-Bridge Converter in On Board Charger in Electric Vehicles for High Efficiency and High Power Density (전기자동차 OBC 용 Phase-Shifted Full-Bridge 컨버터의 고효율 및 고전력밀도 달성을 위한 스위칭 주파수 설계)

  • Lee, Jae Han;Son, Won-Jin;Ann, Sangjoon;Byun, Jongeun;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.346-347
    • /
    • 2019
  • 본 논문에서는 3.3 [kW] on-board charger (OBC) 용 phasw-shifted full-bridge (PSFB) 컨버터의 고효율 및 고전력 밀도 달성을 위한 스위칭 주파수 설계 방안을 제안한다. 스위칭 주파수에 따라 달라지는 손실 양상 및 전력 밀도에 대해 분석하기 위해 각 스위칭 주파수 별 반도체 소자 손실과 수동 소자 손실을 계산하고, 수동 소자의 부피 변화에 따른 전력밀도 변화를 분석한다. 분석 결과를 바탕으로 고효율 및 고전력밀도 달성을 위한 시스템 설계 포인트를 선정하고 시뮬레이션을 통하여 설계 결과를 검증한다.

  • PDF

Optimal Resonant Frequency Design of Series-Loaded Resonant DC-DC Converter for EV On-Board Charger (EV 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.167-168
    • /
    • 2011
  • 본 논문에서는 전기자동차 (Electric Vehicles, EVs)에 사용되는 탑재형 충전기 (On-Board Charger, OBC)에 적용된 부하직렬공진형 컨버터 (Series-Loaded Resonant DC-DC Converter, SRC)의 최적 공진주파수를 설계하기 위한 과정을 제시한다. 실제 OBC제품의 입 출력을 토대로 프로세스를 진행하여, 다양한 주파수에 따른 공진 네트워크를 구성한다. 그 결과로 얻어진 파라미터를 이용하여 스위칭 주파수에 따른 자성소자의 사이즈 변화 및 손실량 변화 추이를 분석하여 최적의 설계점을 찾는다.

  • PDF

Switching Frequency Design of LLC Resonant Converter for High Power Density On Board Charger (고전력밀도 OBC 개발을 위한 LLC 공진형 컨버터 스위칭 주파수 설계)

  • Lee, Jae Han;Son, Won-Jin;Ahn, Sangjoon;Byun, Jongeun;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.55-57
    • /
    • 2019
  • 본 논문에서는 3.3[kW] on board charger(OBC)의 고전력 밀도 달성을 위한 LLC 공진형 컨버터의 최적 스위칭 주파수를 설계한다. 스위칭 주파수에 따라 달라지는 손실 양상 및 전력 밀도를 분석하기 위해 각 스위칭 주파수 별 반도체 소자 손실을 계산하고, 각 주파수에 적합한 변압기를 설계하여 주파수 변화에 따른 시스템 손실과 부피를 비교한다. 비교 결과를 바탕으로 최적 스위칭 주파수를 설계한다.

  • PDF