• Title, Summary, Keyword: Optimum design

Search Result 5,490, Processing Time 0.061 seconds

A hybrid simulated annealing and optimality criteria method for optimum design of RC buildings

  • Li, Gang;Lu, Haiyan;Liu, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.19-35
    • /
    • 2010
  • This paper proposes a hybrid heuristic and criteria-based method of optimum design which combines the advantages of both the iterated simulated annealing (SA) algorithm and the rigorously derived optimality criteria (OC) for structural optimum design of reinforced concrete (RC) buildings under multi-load cases based on the current Chinese design codes. The entire optimum design procedure is divided into two parts: strength optimum design and stiffness optimum design. A modified SA with the strategy of adaptive feasible region is proposed to perform the discrete optimization of RC frame structures under the strength constraints. The optimum stiffness design is conducted using OC method with the optimum results of strength optimum design as the lower bounds of member size. The proposed method is integrated into the commercial software packages for building structural design, SATWE, and for finite element analysis, ANSYS, for practical applications. Finally, two practical frame-shear-wall structures (15-story and 30-story) are optimized to illustrate the effectiveness and practicality of the proposed optimum design method.

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Optimum Design of Cantilever Retaining Wall (켄틸레버 옹벽의 최적 설계)

  • 김종옥
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.1
    • /
    • pp.90-99
    • /
    • 1995
  • In this study, the algorithm for the optimum design of cantilever retaining wall was de veloped and solved using Modified Method of Feasible Directions(MMFD), Sequential Linear Programming(SLP) and Sequential Quadratic Programming(SQP). The algorithm was applied to the optimum design of 3-different height cantilever re tairing walls. It was shown that even though the starting points and optimization strategies are dif- ferent, the objective function and optimum design variables converge to within a close range, and consequently the reliability and efficiency of the underlying optimum design algorithm can be verified. It is expected that the optimum design algorithm developed in this study can be utilized efficiently for the optimum design of any scale cantilever retaining wall. Using optimum design method, cantilever retaining wall will be designed more economi- cally and reasonably than using traditional design method.

  • PDF

Size, Shape and Topology Optimum Design of Trusses Using Shape & Topology Genetic Algorithms (Shape & Topology GAs에 의한 트러스의 단면, 형상 및 위상최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • /
    • pp.43-52
    • /
    • 2004
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algerian was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Optimum Design of Greenhouse Structures Using Continuous and Discrete Optimum Algorithms (연속 및 이산화 최적알고리즘에 의한 단동온실구조의 최적설계)

  • Park, Choon-Wook;Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.199-206
    • /
    • 2005
  • In paper the discrete optimum design program was developed using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms. In this paper, the objective function is the weight of structures and the constraints are limits state design limits method. The design variables are diameter and thick of steel pipe. Design examples are given to show the applicability of the optimum design using the continuous and discrete optimum algorithms based on the SUMT and genetic algorithms of this study.

  • PDF

Computer Aided-Optimum Design of Tractor-Rotary Power Driveline (II) - Optimum Design - (컴퓨터를 이용한 트랙터 -로터리 전동 라인의 최적 설계 (II) -최적 설계 -)

  • 류일훈;김경욱;김대철
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-116
    • /
    • 1997
  • Using the design variables and conditions reported in the rut part of this paper, an analysis and optimum design of the tractor-rotary power driveline were carried out. The optimum design method involved 1 variable, 2 variable and multiple variable analysis performed as requested in the design process. In order to evaluate the effects of the design variables on the power transmission performance a sensitivity analysis were also conducted. the results indicated that the length and link point of the upper link, the upper hitch point of the implement master and the location of the implement input connection affect most significantly the driveline performance. The optimum design improved the performance of an exampled tractor-rotary driveline by 93% in terms of cosine ratio.

  • PDF

Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method- (저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로-)

  • 김종옥;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

Optimum Design of Prestressed Concrete Girder Railway Bridge (프리스트레스트 콘크리트 거더 철도교의 최적설계)

  • Lee Jong-Min;Seo Dong-Joo;Lee Tae-Gyun;Lee Joung-Sun;Cho Sun-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.267-275
    • /
    • 2005
  • Prestressed concrete girder(PSC girder) bridges have been used widely at the railway as well as highway because they are great in the functional and economical efficiency. Also they have the advantage of convenience of design and construction. However it could be easily verified that the section of PSC girder is excessive design, which has much redundancy against design loads. Thus, in this paper the formulation of the optimum design for PSC girder railway bridge is suggested and dominant design variables and constraints are inquired as performing the optimum design. In order to effective optimum design, design variables are formulated as PSC girder sectional dimension and girder space. The objective is adopted as total cost of PSC girder railway bridge. Also, constraints are formulated according to Korean railway design specification and considering construction-ability such as PS anchorage and girder space. Using the proposed optimum design system, optimum PSC girder railway bridge design has been performed. And from the results of analysis it is suggested to denote the optimum section which satisfies the structural safety and economical efficiency all together.

Size and Shape Discrete Optimum Design of Planar and Spacial Steel Structures Using Fuzzy-Genetic Algorithms (퍼지-유전자알고리즘에 의한 평면 및 입체 강구조물의 단면/형상 이산화 최적설계)

  • Park, Choon-Wook;Yuh, Baeg-Youh;Kim, Su-Won
    • Proceeding of KASS Symposium
    • /
    • /
    • pp.236-245
    • /
    • 2005
  • This paper was developed the discrete optimum design program by the refined fuzzy-genetic algorithms based on the genetic algorithms and fuzzy theory. The optimum design of this paper can perform both size and shape optimum design for planar and spacial steel structures. In this paper, the objective function is the weight of steel structures and the constraints are the design limits defined by design and buckling strengths, displacements and thicknesses. The design variables are dimensions and coordinates of steel sections. Design examples are given to show the applicability of the discrete optimum design program of this paper.

  • PDF

Automatic Discrete Optimum Design of Space Trusses using Genetic Algorithms (유전자알고리즘에 의한 공간 트러스의 자동 이산화 최적설계)

  • Park, Choon-Wook;Youh, Baeg-Yuh;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.1
    • /
    • pp.125-134
    • /
    • 2001
  • The objective of this study is the development of size discrete optimum design algorithm which is based on the GAs(genetic algorithms). The algorithm can perform size discrete optimum designs of space trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of space trusses and the constraints are limite state design codes(1998) and displacements. The basic search method for the optimum design is the GAs. The algorithm is known to be very efficient for the discrete optimization. This study solves the problem by introducing the GAs. The GAs consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. In the genetic process of the simple GAs, there are three basic operators: reproduction, cross-over, and mutation operators. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying GAs to optimum design examples.

  • PDF