• Title, Summary, Keyword: PID controller

Search Result 1,658, Processing Time 0.049 seconds

Design and Implementation of Fuzzy PID Controller (Fuzzy PID 제어기 설계 및 구현)

  • Shin Wee-Jae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.89-94
    • /
    • 2005
  • In this paper, we propose a fuzzy PID controller of new method. There are two problems in absolute digital PID controller. First, much calculation time need for obtain the sum of data at each period. Second, this is problem need much memory because to storage every data at the before period. We use the speed type PID digital controller to improvement such problems. In the propose controller doesn't use without adjustment the crisp output error and we doesn't use nile tables in the fuzzy inference process at the forward stage fuzzifier. We inference output member ship function by using the relation and range of two variable of PID gain parameters. We can obtained desired results through the simulation and a experiment of the hydraulic servo motor control system.

  • PDF

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

Design of a IA-Fuzzy Precompensated PID Controller for Load Frequency Control of Power Systems (전력시스템의 부하주파수 제어를 위한 IA-Fuzzy 전 보상 PID 제어기 설계)

  • 정형환;이정필;정문규;김창현
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.26 no.4
    • /
    • pp.415-424
    • /
    • 2002
  • In this paper, a robust fuzzy precompensated PID controller using immune algorithm for load frequency control of 2-area power system is proposed. Here, a fuzzy precompensated PID controller is designed as a fuzzy logic based precompensation approach for PID controller. This scheme is easily implemented by adding a fuzzy precompensator to an existing PID controller. We optimize the fuzzy precompensator with an immune algorithm for complementing the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and fuzzy rules. Simulation results show that the proposed robust load frequency controller can achieve good performance even in the presence of generation rate constraints.

A Dual PID Controller for High-Accuracy Positioning of Ink Jet Printer Media Advance System (잉크젯 프린터 용지 이송 장치의 정밀 위치 제어를 위한 이중 PID 제어기의 설계)

  • 조영완
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.317-324
    • /
    • 2004
  • The ink jet printer media advance system is required to be exactly driven to the target position via tracking the reference velocity profile to obtain the high quality print image. A single gain PID controller is not sufficient to fulfill the control objectives, the exact velocity tracking and the accurate positioning, at the same time. A dual PID controller and its switching strategy are presented in this paper to achieve the control objectives. The media advance system is controlled by two separate PID controllers, one of which is for velocity control, and the other is for position control. A PID controller controls the velocity of the media advance system until it reaches the predetermined switching position. When the media advance system passes the predetermined position, the controller is switched to the other PID controller which is more profitable for exact positioning. The switching position is determined by the estimated stop distance. The simulation and experimental results are presented to show the validity and effectiveness of the proposed controller.

A Learning Method of PID Controller by Jacobian in Multi Variable System (다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법)

  • 임윤규;정병묵
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.

PID controller tuning for processes with time delay

  • Lee, Yongho;Lee, Moonyong;Park, Sunwon;Brosilow, Coleman
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.291-294
    • /
    • 1996
  • By far the PID controller is most widely sed in the process industries. However, current tuning methods yield PID parameters only for a restricted class of process models. There is no general methodology of PID controller tuning for arbitrary process models. In this paper, we generalize the IMC-PID approach and obtain the PID parameters for general models by approximating the ideal controller with a Maclaurin series. Further, the PID controller tuned by the proposed PID tuning method gave more closer closed-loop response to the desired response than those tuned by other tuning methods.

  • PDF

Tuning gains of a PID controller using fuzzy logic-based tuners (퍼지 로직 동조기를 이용한 PID 제어기의 이득 조정)

  • 이명원;권순학;이달해
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.184-187
    • /
    • 1996
  • In this paper, an algorithm for tuning gains of a PID controller is proposed. The proposed algorithm is composed of two stages. The first is a stage for Lyapunov function-based initial stabilization of an overall system and rough tuning gains of the PID controller. The other is that for fine tuning gains of the PID controller. All tunings are performed by using the well-known fuzzy logic-based tuner. The computer simulations are performed to show the validity of the proposed algorithm and results are presented.

  • PDF

A Combined Fuzzy -PID Controller

  • Jibril Jiya;Cheng Shao;Chai, Tian-You
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.465-468
    • /
    • 1998
  • In this paper, merits of both fuzzy and PID controllers are combined. The combined controller is designed such that the tuning of the PID controller is achieved by the basic fuzzy controller via its rule base. The proposed scheme avoids the tuning of PID parameters which is always a time consuming task, difficult to carry out and often poorly done. Computer simulations are made to demonstrate the satisfactory tracking performance of the combined fuzzy-PID controller.

  • PDF

The Design Self Compensated PID Controller and The Application of Magnetic Levitation System (신경회로망을 이용한 자기 보상 PID 제어기 설계와 자기부양시스템 적용 실험)

  • Kim, Hee-Sun;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.499-501
    • /
    • 1998
  • In this paper, we present a self-compensating PID controller which consists of a conventional PID controller that controls the linear components and a neural controller that controls the higher order and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the control errors through the neuro-controller. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

A PID learning controller for DC motors (DC 전동기를 위한 PID 학습제어기)

  • Baek, Seung-Min;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.555-562
    • /
    • 1997
  • With only the classical PID controller applied to control of a DC motor, good (target) performance characteristic of the controller can be obtained if all the model parameters of DC motor and operating conditions such as external load torque, disturbance, etc. are known exactly. However, in case when some of system parameters or operating conditions are uncertain or unknown, the fixed PID controller does not guarantee good performance, which is assumed with precisely known system parameters and operating conditions. In view of this and the robustness enhancement of DC motor control system, we propose a PID learning controller which consists of a set of learning rules for PID gain tuning and learning of an auxiliary input. The proposed PID learning controller is shown to drive the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one world wide asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed PID learning controller, thereby showing its superiority to the conventional fixed PID controller.

  • PDF