• Title, Summary, Keyword: PU Elastomer

Search Result 12, Processing Time 0.028 seconds

Friction and Wear Properties of Improved Polyurethane Based Magneto-Rheological Elastomer (향상된 폴리우레탄 기반 자기유변탄성체의 마찰 마모 특성연구)

  • Lian, Chenglong;Hong, Sung-Geun;Lee, Kwang-Hee;Lee, Chul-Hee;Kim, Cheol-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2012
  • Typical magneto-rheological (MR) elastomers consist of silicon-based material. A number of studies have been carried out to evaluate the vibration and tribological characteristics of silicon-based MR e-lastomers. However, these elastomers have quite low strength, so they have low wear resistance. In this study, polyurethane-based MR elastomers with performances better than those of MR elastomers. Experiments have been conducted on different MR elastomers (Pu MR elastomer, Pu-Si MR elastomer, and Pu-wrapped-Si MR elastomer) and different predefined magnetic directions (Non-Direction, Vertical Direction, and Horizontal Directionality) to evaluate the friction and wear performance under a magnetic field. The results show that Pu-wrapped-Si MR elastomer with a horizontal predefined magnetic field has the best performance in terms of wear.

Synthesis and Properties of Energetic Thermoplastic Polyurethane included Glycidyl Azide Polymer (Glycidyl Azide Polymer를 포함하는 에너지화 열가소성 폴리우레탄의 합성 및 성질)

  • Kim, Hyoung-Sug;You, Jong-Sung;Kweon, Jung-Ok;Noh, Si-Tae;Kwon, Soon-Kil;Lee, Jung-Hwan;Yu, Jae-Chul;Choi, Keun-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.660-666
    • /
    • 2009
  • Thermoplastic polyurethane elastomer(PU-TPE) and energetic thermoplastic polyurethane Elastomer(E-PU-TPE) were prepared from Hexamethylene diisocyanate(HDI), 1,4-BD/AA ester polyol and glycidyl azide polymer(GAP-2400) as an energetic material by the addition polymerization. The PU-TPE and E-PU-TPE were characterized by FT-IR and GPC. Viscometer, DSC and UTM were used to investigate the viscose behavior with a various solvent, thermal properties and mechanical properties of PU-TPE and E-PU-TPE, which are of potential interest for the development of high performance binder of energetic solid propellants. It was found that $M_w$ of PU-TPE and E-PU-TPEs are over 100,000 and decreased with increase of GAP-2400 contents. $T_m$ and ${\Delta}H$ as thermal properties decreased and also tensile strength and elongation at break as mechanical properties decreased with increase of GAP-2400 contents.

Reactions and Properties of a RT-Castable PU Elastomer Modified with Oligomeric Diol (올리고머형 디올로 개질된 상온주형용 PU 엘라스토머의 반응과 물성)

  • Ahn, Won-Sool;Kim, Hoon-Seop
    • Elastomers and Composites
    • /
    • v.43 no.1
    • /
    • pp.18-24
    • /
    • 2008
  • An oligomeric diol was utilized as a modifier for the reaction rate and mechanical properties of a RT-castable polyurethane elastomer. Both the reaction rate and the tensile strength of the blend samples, in which the modifier and the base resins were mixed with one-shot method, showed an exponential decrease as the increase of modifier concentration. Thermal analysis method of Kissinger was also effectively applied in the present study, showing good linearity in the plot of ln $(q/T^2_p)$ vs. $(1/T_p)$ and activation energy $E_a$ of 44.80 kJ/mol, which is similar to the general castable polyurethane. In the mechanical properties, remarkable decrease of strength was found by the addition of modifier concentration range up to about 20 phr, while characteristic elongation property of the elastomer, high elongation at lower strength, was observed over 20 phr of the modifier. Exponential decrease of the break strength of the blend sample exhibited that the mechanical properties of the blend might be considerably sensitive to the modifier concentration.

The Development of Eco-friendly Fiber Materials for Transport (수송용 친환경 섬유소재 개발)

  • Bok, Jin-Seon;Lee, Hyun-Seok;Jeong, Geung-Sik;Lee, Ki-Young;Park, Chang-Seok
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • /
    • pp.18-18
    • /
    • 2012
  • 전 세계적으로 이산화탄소 배출량 저잠을 위해 모든 산업분야에서 연구개발의 중점을 두고 있다. 그의 일환으로 자동차 산업에서는 EU규제에 따라 리사이클이 가능한 소재 개발이 요구되고 있으며, 그중 많은 양이 사용되고 있는 PU Foam의 대체 재료 개발이 시급한 실정이다. 기존 자동차의 흡음재로 주로 사용되고 있는 PU Foam 소재는 통기성이 부족할 뿐만 아니라 연소 시 인체에 유해한 HCN Gas를 발생시키고, 한번 성형된 부품은 Recycle 및 Re-Use가 불가능하다는 단점이 있다. 또한 장시간 사용시 황변 발생과 악취가 발생하는 등으로 최근 대두되고 있는 자동차 내장재 감성품질 향상 측면에 한계를 나타내고 있다. 이러한 Low Melting 성능을 가지는 PET 부직포 소재의 한계를 극복하기 위하여 저융점 성능의 Elastic Fiber의 개발과 함께 고탄성 복합부직포 소재의 개발을 통해 높은 변형률과 우수한 복원력을 나타내는 환경친화형 열가소성 탄성체(Thermoplastic Elastomer) 개발을 추진하고 있다. 고탄성 복합부직포는 자동차 내장재 성형 시 열을 가하더라도 Elastomer 자체의 탄성 발현을 통해 초기의 Bulky성을 유지할 수 있으며, Recycle 및 Re-use가 가능하여 환경 친화적인 측면에서도 큰 장점을 갖고 있다. 자동차용 흡음 내장재뿐만 아니라 각종 수송용 차량의 경량화 및 쾌적성 향상을 위한 용도로써 자동차 내장용 PU Foam의 57% 이상을 차지하고 있는 Seat Cushion재 등의 대체가 가능하며, 다양한 산업분야에서 사용되고 있는 PU Foam의 대체로 다양한 용도 전개가 가능할 것으로 예상된다. 본 연구에서는 PU Foam의 대체 재료로 각광받고 있는 Elastic PET를 개발하여 자동차 내장재로의 적용 가능성을 검토하였다.

  • PDF

A Study on Formation and Thermal Decomposition Kinetics of PU Elastomers by Dynamic DSC and TGA Analysis (Dynamic DSC 및 TGA 열분석을 이용한 PU Elastomer의 중합반응 및 열분해 반응 Kinetics에 관한 연구)

  • Yoon, Soo-Koong;Ahn, Won-Sool
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.47-54
    • /
    • 2007
  • Reaction kinetics of polyurethane elastomers (PU) were studied using dynamic DSC and TGA for three PU samples of general purpose (Sample A), high temperature cross-likable CASE purpose with MOCA (Sample B), and RT cross-likable CASE purpose grade (Sample C). From DSC results, sample with MOCA(Sample B) showed lower shift of peak temperature, while showing broader thermograms than those of general purpose grade (Sample A). On the other hand, RT cross-linkable PU grade (Sample C) showed an interesting double mode reaction patterns, i.e., a lower temperature reaction at about $70\;^{\circ}C$, and a higher temperature reaction in the range of $140{\sim}170\;^{\circ}C$, indicating that it requires 2-step reaction process in order to complete the reaction. Once the cross-linking reaction completed, however, TGA results showed that all the samples would be considered to have similar chemical structures, showing similar decomposition processes. Sample C, especially, had showed decomposition properties of both Sample A and Sample B. Formation activation energies calculated from Kissinger method showed 10.39, 65.85, 36.52(Low $T_p$) and 18.21(High $T_p$) kcal/mol, while decomposition activation energies were 31.94, 30.84, 24.16 kcal/mol, respectively.

CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexible (고강도, 고강성, 그리고 유연한 탄소나노튜브 버키페이퍼-폴리우레탄 나노복합체)

  • Ha, Yu-Mi;Lim, Da-un;Kim, Yoong Ahm;Jung, Yong Chae
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.161-166
    • /
    • 2016
  • Carbon nanotube buckypaper (CNTs-BP)/thermoplastic polyurethane (PU) elastomer composites were successfully fabricated. The CNTs-BP/PU nanocomposites exhibited simultaneous improvements in both tensile modulus and strength by 1360 and 430%, respectively, as compared to pure PU. Possible reinforcing mechanisms were evidenced by SEM analyses and tensile tests. The CNTs-BP/PU nanocomposites can be potentially used as an inter-reinforcing agent in ultra-lightweight, high-strength aircraft, carbon-fiber-reinforced plastics, etc.

A Study on Transformation of Dynamic DSC Results into Isothermal Data for the Formation Kinetics of a PU Elastomer

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.52-56
    • /
    • 2018
  • The present study examines the transformation of dynamic DSC data into the equivalent isothermal data for the formation kinetics of a polyurethane elastomer. The reaction of 2'-dichloro-4,4'-methylenedianiline (MOCA) with a PTMG/TDI-based isocyanate prepolymer was evaluated. DSC measurement was performed in the dynamic scanning mode with several different heating rates to obtain the reaction thermograms. Then, the data was transformed into the isothermal data through a procedure based on Ozawa analysis. The main feature of this procedure was the transformation of $({\alpha}-T)_{\beta}$ curves from dynamic DSC into $({\alpha}-t)_T$ curves using the isoconversional $(t-T)_{\alpha}$ diagram. Validity was discussed for the relationship between the dynamic DSC data and the transformed isothermal results.

Preparation and Characterization of Polyamide4(PA4)-Polyurethane(PU)-PA4 Triblock Copolymers (Polyamide4(PA4)-Polyurethane(PU)-PA4 삼블록 공중합체의 제조 및 특성)

  • Park, Ki Wan;Kim, Dong Hyun;Kim, Hyung Joong
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.9-15
    • /
    • 2014
  • Polyamide4 (PA4)-polyurethane (PU)-PA4 triblock copolymers were synthesized by isocynated (NCO)-terminated PU prepared from 4,4'-diphenyl methane diisocyante (MDI) and polytetramethylene glycol (PTMG) as an initiator and potassium pyrrolidonate (P-py) as a catalyst for anionic ring opening polymerization of 2-pyrrolidone. Subsequently copolymer was controlled to contain different or same molecular weight of PA4 hard block with same or different molecular weight of PU soft block in order to investigate the effects of those differences on various properties of triblock copolymers as a thermoplastic elastomer. As the results shown in typical properties of block copolymeric elastomers, the mechanical strength and melting point ($T_m$) of the copolymers increased with an increase in molecular weight of PA4 block while the elongation at break increased with an increase in that of PU block.

Synthesis and Property of Modified PMMA Resin Using Polyurethane and Polyurethane Dimethacrylate (Polyurethane과 polyurethane dimethacrylate를 이용한 내충격성 PMMA수지의 합성과 그 물성)

  • Kim, Dong-Hyun;Kim, Ju-Young;Seo, Kyung-Do
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.616-626
    • /
    • 1993
  • Polyurethane(PU) have an excellent flexibility and toughness so that it has been widely used as an elastomer. PMMA was blended with PU to improve the impact property. Five types of PU, having different molecular weight and different polyol types, were prepared and blended with PMMA in order to investigate the effect of molecular weight and polyol type of PU on property of PU-PMMA blend. Tensile strength of PU-PMMA blend was determined by Inston. Differential Scanning Calorymetry(DSC) and Scanning. Elctron Microscopy(SEM) were used to observe morphology change and glass transition temperature changes of PU-PMMA blends. Transparency of PU-PMMA blends was determined by haze meter. But, owing to intrinsic incompatability of PU-PMMA, Low impact strength of PMMA wasn't improved through PU-PMMA blend. therefore, polyurethane dimethacrylate(PUD), having similiar chemical structure to PU and two vinyl group at both ends, was prepared and reacted with methyl methacrylate(MMA) to form crosslinked copolymer Mechanical property of this crosslinked polymer, such as impact strength and transparency, was investigated by Instron, Izod type (Cantilever beam) impact tester and haze meter. Results of these measurements showed that crosslinked copolymer of PUD-MMA was better impact resistance than PMMA and maintained similar transparency to PMMA.

  • PDF

Effect of Sliding Speed on Wear Characteristics of Polyurethane Seal (미끄럼 속도 변화에 따른 폴리우레탄 씰의 마모 특성)

  • Kim, Hansol;Jeon, Hong Gyu;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.49-54
    • /
    • 2018
  • Hydraulic reciprocating seal has been widely used to prevent fluid leakage in hydraulic systems. Also, hydraulic reciprocating seal plays a significant role to provide lubricant film at contacting interface to minimize tribological problems due to sliding with counter material. To predict lifetime of hydraulic reciprocating seal, quantitative understanding of wear characteristics with respect to operating conditions such as normal force and sliding speed is needed. In this work, effect of sliding speed on wear of polyurethane (PU) hydraulic reciprocating seal were experimentally investigated using a pin-on-disk tribo-tester. The wear characteristics of PU specimens were quantitatively determined by comparing the confocal microscope data before and after test. It was found that the wear rate of PU specimens decreased from $4.9{\times}10^{-11}mm^3$ to $1.1{\times}10^{-11}mm^3/Nm$ as sliding speed increased from 120 mm/s to 940 mm/s. Also, it was observed that the friction decreased slightly as the sliding speed increased. Improvement of lubrication state with increasing sliding speed was likely to be responsible for this enhanced friction and wear characteristics. This result also suggests that decrease in sliding distance between PU elastomer and counter materials at lower sliding speed is preferred. Furthermore, the quantitative assessment of wear characteristics of PU specimen may be useful in prediction of lifetime of PU hydraulic reciprocating seal if the allowed degree of wear for failure of the seal is provided.