• Title, Summary, Keyword: Particle-in-cell simulation

Search Result 103, Processing Time 0.04 seconds

Simulation of the Electrical Response of Charged Particles in the Fluid for Horizontal Switching Electrophoretic Cell

  • Yeo, Jun-Ho;Kim, Sang-Won;Lee, Gi-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.498-501
    • /
    • 2009
  • Electrophoretic displays (EPDs) are attracting considerable attentions as a paper-like display. Especially, Electrophoretic cell consists of micron-sized, charged particles dispersed in a viscous fluid. When an external electric field is applied, the charged particles move with a speed proportional to the particle mobility and the local field strength. In electrophoretic displays fast switching times are required, so knowing the particle mobility is very important. In this paper, we study a novel simulation for calculating the particle motions submerged in a viscous fluid for horizontal switching electrophoretic cell.

  • PDF

Particle-in-Cell Simulation for the Control of Electron Energy Probability & Electron temperature of Dielectric Barrier Discharges at Atmospheric Pressure

  • Lee, Jung-Yel;Song, In-Cheol;Lee, Ho-Jun;Lee, Hae-June
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.528-528
    • /
    • 2012
  • Recently, atmospheric pressure plasmas attract lots of interests for the useful applications such as surface modification and bio-medical treatment. In this study, a particle-in-cell Monte Carlo collision (PIC-MCC) simulation was adopted to investigate the discharge characteristics of a planar micro dielectric barrier discharge (DBD) with a driving frequency from 13.56 MHz to 162.72 MHz and with a gap distance of 80 micrometers. The variation of frequency, in the change in the electron energy probability function (EEPF). Through the relation between the ion trajectories and the frequency, results in the change of EEPFs is achievable with the turning point of frequency mode. Therefore, it is possible to categorize the efficient operation range of DBDs for its applications by controlling the interactions between plasmas and neutral gas for the generation of preferable radicals.

  • PDF

CPFD Simulation for Fast Pyrolysis Reaction of Biomass in a Conical Spouted Bed Reactor using Multiphase-particle in Cell Approach (Multiphase-Particle in Cell 해석 기법을 이용한 원뿔형 분사층 반응기 내 바이오매스의 급속열분해 반응 전산해석)

  • Park, Hoon Chae;Choi, Hang Seok
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.7
    • /
    • pp.685-696
    • /
    • 2017
  • This study focuses on computational particle fluid dynamics (CPFD) modeling for the fast pyrolysis of biomass in a conical spouted bed reactor. The CPFD simulation was conducted to understand the hydrodynamics, heat transfer, and biomass fast pyrolysis reaction of the conical spouted bed reactor and the multiphase-particle in cell (MP-PIC) model was used to investigate the fast pyrolysis of biomass in a conical spouted bed reactor. A two-stage semi-global kinetics model was applied to model the fast pyrolysis reaction of biomass and the commercial code (Barracuda) was used in simulations. The temperature of solid particles in a conical spouted bed reactor showed a uniform temperature distribution along the reactor height. The yield of fast pyrolysis products from the simulation was compared with the experimental data; the yield of fast pyrolysis products was 74.1wt.% tar, 17.4wt.% gas, and 8.5wt.% char. The comparison of experimental measurements and model predictions shows the model's accuracy. The CPFD simulation results had great potential to aid the future design and optimization of the fast pyrolysis process for biomass.

Particle-in-cell simulation feasibility test for analysis of non-collective Thomson scattering as a diagnostic method in ITER

  • Zamenjani, F. Moradi;Asgarian, M. Ali;Mostajaboddavati, M.;Rasouli, C.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.568-574
    • /
    • 2020
  • The feasibility of the particle-in-cell (PIC) method is assessed to simulate the non-collective phenomena like non-collective Thomson scattering (TS). The non-collective TS in the laser-plasma interaction, which is related to the single-particle behavior, is simulated through a 2D relativistic PIC code (XOOPIC). For this simulation, a non-collective TS is emitted from a 50-50 DT plasma with electron density and temperature of ne = 3.00 × 1013 cm-3 and Te = 1000 eV, typical for the edge plasma at ITER measured by ETS system, respectively. The wavelength, intensity, and FWHM of the laser applied in the ETS system are λi,0 = 1.064 × 10-4 cm, Ii = 2.24 × 1017 erg=s·㎠, and 12.00 ns, respectively. The electron density and temperature predicted by the PIC simulation, obtained from the TS scattered wave, are ne,TS = 2.91 × 1013 cm-3 and Te,TS = 1089 eV, respectively, which are in accordance with the input values of the simulated plasma. The obtained results indicate that the ambiguities rising due to the contradiction between the PIC statistical collective mechanism caused by the super-particle concept and the non-collective nature of TS are resolved. The ability and validity to use PIC method to study the non-collective regimes are verified.

Analysis of luminous efficacy of a PDP cell using a hybrid simulation with an electron-fluid and ion-particle model

  • Lee, Hae-June;Shim, Seung-Bo;Song, In-Cheol;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • /
    • pp.24-27
    • /
    • 2009
  • A hybrid model has been developed which adopts a fluid model for electrons and a particle-in-cell (PIC) model for ions. Using the hybrid simulation, the discharge characteristics are investigated with the diagnostics for the electric field and the wall charge profile, density distributions of charged and excited particles, distributions of ultraviolet lights on phosphor, and the visible lights emitted from the PDP cell. Also, energy and angle distributions of the ions at the MgO protective layer are obtained for the analysis of material effect. The comparison of hybrid simulation results with experimental results as well as that with the conventional fluid simulation shows that the new model is more adequate for the simulation of PDP cells.

  • PDF

Effects of the Particle Electric Conductivity on the Aggregation of Unipolar Charged Nanoparticles (단극하전 나노입자의 응집성장 과정에서 입자의 전기전도도의 효과에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo;Chang, Hyuk-Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2003
  • Effects of the electric conductivity of particles were studied for the aggregation process of charged particles with a Brownian dynamic simulation in the free molecular regime. A periodic boundary condition was used for the calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered two extreme cases, a perfect conductor and a perfect nonconductor. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was D$_{f}$= 1.761. However, the fractal dimension decreased from 1.694 to 1.360 for the case of the perfect conductor, and from 1.610 to 1.476 for the case of the perfect nonconductor, with the increase of the average number of charges on the primary particle from 0.2 to 0.3. These values were smaller than that of the centered charge case.e.

A Two-Dimensional Particle-in-cell Simulation for the Acceleration Channel of a Hall Thruster

  • Lim, Wang-Sun;Lee, Hae-June;Lee, Jong-Sub;Lim, Yu-Bong;Seo, Mi-Hui;Choe, Won-Ho;Seon, Jong-Ho;Park, Jae-Heung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • /
    • pp.557-560
    • /
    • 2008
  • A two-dimensional particle-in-cell(PIC) simulation with a Monte-Carlo Collision(MCC) has been developed to investigate the discharge characteristics of the acceleration channel of a HET. The dynamics of electrons and ions are treated with PIC method at the time scale of electrons in order to investigate the particle transport. The densities of charged particles are coupled with Poisson's equation. Xenon neutrals are injected from the anode and experience elastic, excitation, and ionization collisions with electrons, and are scattered by ions. These collisions are simulated by using an MCC model. The effects of control parameters such as magnetic field profile, electron current density, and the applied voltage have been investigated. The secondary electron emission on the dielectric surface is also considered.

  • PDF

Comparison between quasi-linear theory and particle-in-cell simulation of solar wind instabilities

  • Hwang, Junga;Seough, Jungjoon;Yoon, Peter H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.2-47.2
    • /
    • 2016
  • The protons and helium ions in the solar wind are observed to possess anisotropic temperature profiles. The anisotropy appears to be limited by various marginal instability conditions. One of the efficient methods to investigate the global dynamics and distribution of various temperature anisotropies in the large-scale solar wind models may be that based upon the macroscopic quasi-linear approach. The present paper investigates the proton and helium ion anisotropy instabilities on the basis of comparison between the quasi-linear theory versus particle-in-cell simulation. It is found that the overall dynamical development of the particle temperatures is quite accurately reproduced by the macroscopic quasi-linear scheme. The wave energy development in time, however, shows somewhat less restrictive comparisons, indicating that while the quasi-linear method is acceptable for the particle dynamics, the wave analysis probably requires higher-order physics, such as wave-wave coupling or nonlinear wave-particle interaction. We carried out comparative studies of proton firehose instability, aperiodic ordinary mode instability, and helium ion anisotropy instability. It was found that the agreement between QL theory and PIC simulation is rather good. It means that the quasilinear approximation enjoys only a limited range of validity, especially for the wave dynamics and for the relatively high-beta regime.

  • PDF

Three-dimensional Self-consistent Particle-in-cell and Monte Carlo Collisional Simulation of DC Magnetron Discharges

  • Kim, Seong-Bong;Chang, Hyon-U;Yoo, Suk-Jae;Oh, Ji-Young;Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.526-526
    • /
    • 2012
  • DC magnetron discharges were studied using three-dimensional self-consistent particle-in-cell and Monte Carlo collisional (PIC-MCC) simulation codes. Two rectangular sputter sources (120 mm * 250 mm and 380 mm * 200 mm target sizes) were used in the simulation modeling. The number of incident ions to the Cu target as a function of position and simulation time was obtained. The target erosion profile was calculated by using the incident ions and the sputtering yields of the Cu target calculated with SRIM codes. The maximum ion density of the ion density distribution in the discharge was about $10^{10}cm^{-3}$ due to the calculation speed limit. The result may be less than one or two order of magnitude smaller than the real maximum ion density. However, the target erosion profiles of the two sputter sources were in good agreement with the measured target erosion profiles except for the erosion profile near the target surface, in which which the measured erosion width was broader than the simulation erosion width.

  • PDF