• Title, Summary, Keyword: Phase shift full bridge converter

Search Result 124, Processing Time 0.038 seconds

Improved Phase-shift Pulse-width Modulation Full-bridge Converter using a Blocking Capacitor (블로킹커패시터를 이용한 향상된 위상천이 펄스폭변조 풀브리지 컨버터)

  • Jeong, Gang-Youl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.20-29
    • /
    • 2011
  • This paper presents an improved phase-shift pulse-width modulation (PWM) full-bridge converter using a blocking capacitor. As the proposed converter reduces the circulation energy by inserting only one series blocking capacitor at the primary side of the conventional phase-shift PWM full-bridge converter structure, it improves the operation characteristics of the conventional converter. In this paper, first, the operation of conventional phase-shift PWM full-bridge converter is roughly reviewed, and then the operational principle of the proposed converter is classified and explained by each mode. After that, a prototype design example based on the operational principle is shown. Then, the improved operation characteristics of the proposed converter are actually verified through the experimental results.

Phase-Shift Full-Bridge DC/DC Converter with Fixed-Phase Operation Inverter (고정 위상 동작 인버터를 포함하는 위상천이 풀 브리지 DC/DC 컨버터)

  • Kim, Jin-Ho;Park, Jae-Sung;Kim, Hong-Kwon;Park, Jun-Woo;Shin, Yong-Saeng;Ji, Sang-Keun;Cho, Sang-Ho;Roh, Chung-Wook;Hong, Sung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper, the phase-shift full-bridge DC/DC converter with fixed-phase operation inverter is proposed. The proposed circuit consists of two full-bridge inverters which are connected in parallel. While one full-bridge inverter operates as the fixed-phase, it regulates the output voltage by adjusting the phase of the other inverter. During the normal operation period, the proposed circuit makes the less amount of conduction loss of the primary switches and secondary synchronous rectifiers, as well as the less amount of the current ripple of the output inductor, than the conventional phase-shift full-bridge DC/DC converter does. Also, it achieves high efficiency by reducing the snubber loss of the secondary synchronous rectifier. To sum up, the present inquiry analyzes the theoretical characteristics of the proposed circuit, and shows the experimental results from a prototype for 450W power supply.

Design and Control of the Phase Shift Full Bridge Converter for the On-board Battery Charger of Electric Forklifts

  • Kim, Tae-Hoon;Lee, Seung-Jun;Choi, Woo-Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.113-119
    • /
    • 2012
  • This paper describes the design and control of a phase shift full bridge converter with a current doubler, which can be used for the on-board charger for the lead-acid battery of electric forklifts. Unlike the common resistance load, the battery has a large capacitance element and it absorbs the entire converter output ripple current, thereby shortening the battery life and degrading the system efficiency. In this paper a phase shift full bridge converter with a current doubler has been adopted to decrease the output ripple current and the transformer rating of the charger. The charge controller is designed by using the small signal model of the converter, taking into consideration the internal impedance of the battery. The stability and performance of the battery charger is then verified by constant current (CC) and constant voltage (CV) charge experiments using a lead-acid battery bank for an electric forklift.

ZVS Phase Shift Full-Bridge Converter's Small Signal Modeling and Digital Controller Design (ZVS 위상천이 풀브리지 컨버터의 소신호 모델링 및 디지털 제어기 설계)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.321-322
    • /
    • 2014
  • In this paper, a zero-voltage switching (ZVS) phase shift full-bridge converter is analyzed. The small-signal model is derived to design a digital controller. PLECS simulation shows how sampling method effects on transfer function of ZVS phase shift full-bridge converter.

  • PDF

A Hybrid PWM-Resonant DC-DC Converter for Electric Vehicle Battery Charger Applications

  • Lee, Il-Oun
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1158-1167
    • /
    • 2015
  • In this paper, a new hybrid DC-DC converter is proposed for electric vehicle 3.3 kW on-board battery charger applications, which can be modulated in a phase-shift manner under a fixed frequency or frequency variation. By integrating a half-bridge (HB) LLC series resonant converter (SRC) into the conventional phase-shift full-bridge (PSFB) converter with a full-bridge rectifier, the proposed converter has many advantages such as a full soft-switching range without duty-cycle loss, zero-current-switching operation of the rectifier diodes, minimized circulating current, reduced filter inductor size, and better utilization of transformers than other hybrid dc-dc converters. The feasibility of the proposed converter has been verified by experimental results under an output voltage range of 250-420V dc at 3.3 kW.

Phase-Shift Triple Full-Bridge ZVZCS Converter with All Soft Switched Devices

  • Zhu, Junjie;Qian, Qinsong;Lu, Shengli;Sun, Weifeng
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1337-1350
    • /
    • 2019
  • This paper proposes a Phase-Shift Triple Full-Bridge (PSTB) Zero-Voltage Zero-Current-Switching (ZVZCS) converter with a high switching frequency and high efficiency. In the proposed converter, all three bridge legs are shared leading-legs, and all three transformers work in the Discontinuous Conduction Mode (DCM). Thus, all of the switches and diodes in the PSTB ZVZCS can be soft switched. Moreover, since all of the transformers can pass energy from the primary-side to the secondary-side when their primary-side currents are not zero, there is no circulating current. As a result, the PSTB ZVZCS converter can achieve a high efficiency at high operating frequencies. A theoretical analysis and the characteristics of the proposed converter are presented and verified on a 1MHz 200~300V/24V 1.2kW hardware prototype. The proposed converter can reach a peak efficiency of 96.6%.

A Study on the Loss Analysis for the Phase-Shaft Full-Bridge Converter (위상이동 방식 Full-Bridge 컨버터의 손실 분석에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Lee, Eun-Young;Choi, Geun-Soo
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.157-162
    • /
    • 2003
  • This paper presents the loss analysis of Phase-Shift Full-Bridge Converter. Full-Bridge DC/DC Converter presented in this paper used a phase shift control in the primary side to achieve ZVS (Zero-Voltage-Switching) for main switch. Phase-Shaft Full-Bridge converter have an effect on the high power system. This paper analyses the loss of each component and the various losses in the circuit assessed. The result of the analysis are verified using 2.5kW, 50kHz prototype.

  • PDF

A Study on Implementing a Phase-Shift Full-Bridge Converter Employing an Asynchronous Active Clamp Circuit

  • Lee, Yong-Chul;Kim, Hong-Kwon;Kim, Jin-Ho;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.413-420
    • /
    • 2014
  • The conventional Phase-Shift Full-Bridge (PSFB) converter has a serious voltage spike because of the ringing between the leakage inductance of the transformer and the parasitic output capacitance of the secondary side rectifier switches. To overcome this problem, an asynchronous active clamp technique employing an auxiliary DC/DC converter has been proposed. However, an exact analyses for designing the auxiliary DC/DC converter has not been presented. Therefore, the amount of power that is supposed to be handled in the auxiliary DC/DC converter is calculated through a precise mode analyses in this paper. In addition, this paper proposes a lossy snubber circuit with hysteresis characteristics to reduce the burden that the auxiliary DC/DC converter should take during the starting interval. This technique results in optimizing the size of the magnetic component of the auxiliary DC/DC converter. The operational principles and the theoretical analyses are validated through experiments with a 48V-to-30V/15A prototype.

Implementation of Phase Shift Full-Bridge PWM Converter Using DSP (DSP를 이용한 위상 천이 풀-브릿지 컨버터의 디지털 제어기 구현)

  • Lim Soo-Hyun;Lim Jeong-Gyu;Chung Se-Kyo;Lee Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.137-139
    • /
    • 2006
  • This paper present an implementation of digital control system for a phase-shift full-bridge converter using a digital signal processor. The digital control of phase-shift full-bridge converter provides many advantageous of easily generating various phase-shift timing and implementing a complex voltage and current control algorithm. The digital controller is implemented using the DSP TMS320F2812 and the converter and controller operation is proved through the experimental results.

  • PDF

A Study on the Power Losses and Conversion Efficiency Analysis for the Phase-Shift Controlled Full-Bridge Converter (위상제어방식 풀브릿지 컨버터의 전력손실과 변환효율 분석에 관한 연구)

  • Ahn, Tae-Young;Bong, Sang-Cheol;Heo, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.228-234
    • /
    • 2009
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the power losses and the conversion efficiency for phase-shift controlled full-bridge converter. In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the phase-shift controlled full-bridge converter that includes all the parasitic resistances of the circuit components. While the conduction losses are accurately accounted for the synchronous rectification, the core losses are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype phase-shift controlled full-bridge converter. An excellent correlation between the experiments and theories are obtained for the input voltages of 400V, output voltage 12V and maximum power 720W.