• Title, Summary, Keyword: Phenylalanine Metabolism

Search Result 37, Processing Time 0.039 seconds

Fungal and Plant Phenylalanine Ammonia-lyase

  • Hyun, Min-Woo;Yun, Yeo-Hong;Kim, Jun-Young;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.257-265
    • /
    • 2011
  • L-Phenylalanine is one of the essential amino acids that cannot be synthesized in mammals in adequate amounts to meet the requirements for protein synthesis. Fungi and plants are able to synthesize phenylalanine via the shikimic acid pathway. L-Phenylalanine, derived from the shikimic acid pathway, is used directly for protein synthesis in plants or metabolized through the phenylpropanoid pathway. This phenylpropanoid metabolism leads to the biosynthesis of a wide array of phenylpropanoid secondary products. The first step in this metabolic sequence involves the action of phenylalanine ammonialyase (PAL). The discovery of PAL enzyme in fungi and the detection of $^{14}CO_2$ production from $^{14}C$-ring-labeled phenylalanine and cinnamic acid demonstrated that certain fungi can degrade phenylalanine by a pathway involving an initial deamination to cinnamic acid, as happens in plants. In this review, we provide background information on PAL and a recent update on the presence of PAL genes in fungi.

Metabolic Fate of Phenylalanine in the Corn Smut Fungus Ustilago maydis (옥수수 깜부기균에 의한 페닐알라닌의 대사적 분해)

  • Hyun, Min-Woo;Kim, Seong-Hwan
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.249-253
    • /
    • 2011
  • Cetecol has been known as a component of melanin in teliospores of the corn smut fungus Ustilago maydis. Its metabolic precursor has been assumed to be benzoic acid but it has not been proven yet. This study was carried out to verify the synthesis of benzoic acid and to chase its metabolic origin in U. maydis. For this aim, the catabolic process of phenylalanine was investigated by culturing the fungus in the complete medium containing L-$^{14}C$-phenylalanine and $^{14}C$-trans-cinnamic acid. We detected trans-cinnamic acid, benzoic acid, 4-hydroxybenzoic acid and hydroxybenzoic acid derivatives from the extracts of the fungus cells and cultural filtrates by thin layered chromatography analysis. We also observed that the fungus could completely catabolize L-$^{14}C$-phenylalanine and produce $^{14}CO_2$ in the air. Conclusively, this study provided an evidence that U. maydis could produce benzoic acid through catabolic process of phenylalanine.

Effects of Non-protein Energy Intake on Whole Body Protein Synthesis, Nitrogen Retention and Glucose Turnover in Goats

  • Fujita, Tadahisa;Kajita, Masahiro;Sano, Hiroaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.4
    • /
    • pp.536-542
    • /
    • 2007
  • The responses of whole body protein and glucose kinetics and of nitrogen (N) metabolism to non-protein energy intake (NPEI) were determined using an isotope dilution approach and measurement of N balance in three adult male goats. The diets containing 1.0, 1.5 and 2.0 times ME maintenance requirement, with fixed intake of CP (1.5 times maintenance) and percentage of hay (33%), were fed twice daily for each 21 d experimental period. After an adaptation period of 11 d, N balance was determined over 3 d. On day 17, whole body protein synthesis (WBPS) and glucose irreversible loss rate (ILR) were determined during the absorptive state by a primed-continuous infusion of [$^2H_5$]phenylalanine, [$^2H_2$]tyrosine, [$^2H_4$]tyrosine and [$^{13}C_6$]glucose, with simultaneous measurements of plasma concentrations of metabolites and insulin. Ruminal characteristics were also measured at 6 h after feeding over 3 d. Nitrogen retention tended to increase (p<0.10) with increasing NPEI, although digestible N decreased linearly (p<0.05). Increasing NPEI decreased (p<0.01) ammonia N concentration, but increased acetate (p<0.05) and propionate (p<0.05) concentrations in the rumen. Despite decreased plasma urea N concentration (p<0.01), increased plasma tyrosine concentration (p<0.05), and trends toward increased plasma total amino N (p<0.10) and phenylalanine concentrations (p<0.10) were found in response to increasing NPEI. Increasing NPEI increased ILR of both glucose (p<0.01) and phenylalanine (p<0.05), but did not affect ($p{\geq}0.10$) that of tyrosine. Whole body protein synthesis increased (p<0.05) in response to increasing NPEI, resulting from increased utilization rate for protein synthesis (p<0.05) and unchanged hydroxylation rate of phenylalanine ($p{\geq}0.10$). These results suggest that increasing NPEI may enhance WBPS and glucose turnover at the absorptive state and improve the efficiency of digestible N retention in goats, with possibly decreased ammonia and increased amino acid absorption. In addition, simultaneous increases in WBPS and glucose ILR suggest stimulatory effect of glucose availability on WBPS, especially when sufficient amino acid is supplied.

Biosynthesis of Phenylpropanoid Amides by an Endophytic Penicillium brasilianum Found in Root Bark of Melia azedarach

  • Fill, Taicia Pacheco;Silva, Bianca Ferreira Da;Rodrigues-Fo, Edson
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.622-629
    • /
    • 2010
  • Biosynthetic studies on brasiliamides, potently convulsive and bacteriostatic compounds from an endophytic Penicillium brasilianum isolated from Melia azedarach (Meliaceae), confirms their phenylpropanoid origin, which is very uncommon in fungi. Feeding experiments with [$2-^{13}C$]-phenylalanine indicated the incorporation of two units of this amino acid on brasiliamide structures. The first step in the phenylpropanoid pathway to those compounds was evaluated through enzymatic bioassays and confirmed the phenylalanine ammonia-lyase (PAL) participation. The metabolism of phenylalanine in this fungus is discussed.

Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells

  • Kim, Jungeun;Lee, Jeong-Eun;Lee, Jae-Sung;Park, Jin-Seung;Moon, Jun-Ok;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.62 no.2
    • /
    • pp.263-275
    • /
    • 2020
  • Studies on promoting milk protein yield by supplementation of amino acids have been globally conducted. Nevertheless, there is a lack of knowledge of what pathways affected by individual amino acid in mammary epithelial cells that produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential amino acids for dairy cows, however, researches on mammary cell levels are still lacking. Thus, the aim of this study was conducted to evaluate the effects of PHE and VAL on milk protein synthesis-related and energy-mediated cellular signaling in vitro using immortalized bovine mammary epithelial (MAC-T) cells. To investigate the effects of PHE and VAL, the following concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM. The addition of PHE or VAL did not adversely affect cell viability compared to control group. The concentrations of cultured medium reached its maximum at 0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore, aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1 and mammalian target of rapamycin mRNA expression levels were up-regulated by PHE (166% and 138%, respectively) (p < 0.05). Meanwhile, sodium-dependent neutral amino acids transporter type 2 (ASCT2) and β-casein were up-regulated by VAL (173% in ASCT2, 238% in and 218% in β-casein) (p < 0.05). A total of 134, 142, and 133 proteins were detected in control group, PHE treated group, and VAL treated group, respectively. Among significantly fold-changed proteins, proteins involved in translation initiation or energy metabolism were detected, however, expressed differentially between PHE and VAL. Thus, pathway analysis showed different stimulatory effects on energy metabolism and transcriptional pathways. Collectively, these results showed different stimulatory effects of PHE and VAL on protein synthesis-related and energy-mediated cellular signaling in MAC-T cells.

Study of Synthesis and Biological Function on Aminophosphonic Acids (Aminophosphonic Acids 화합물의 생물학적 기능연구)

  • Kim, Sook-He
    • Journal of Nutrition and Health
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 1971
  • Since ${\beta}-aminoethylphosphonic$ acid was discovered in the living organism, the biosynthesis and biological function of aminophosphonic acids have been extensively studied. The purpose of this project consists in the two parts: 1)the preparation of DL-1-amino-2-phenylethylphosphonic acid (Phenylalanine aminophosphonic acid) and DL-1-amino-3-methylbutyl-phosphonic acid (Isoleucine aminophosphonic acid) by the method of Chamber and Isbell. 2) the study of metabolism and biological functions of those synthetic materials by the animal experiment (white rats) The importance of this project proved to be the first experience fed by animals for the elucidation of biochemical and metabolic functions in the animal body. The following organic synthesis of DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenylethylphosphonic acid are studied. 1)Synthesis of DL-1-amino-3-methylbutylphosphonic acid a) Synthesis of Iso-butylbromide b) Synthesis of Ethyl iso-butylmalonate c) Synthesis of Iso-caproic acid d) Synthesis of $Ethyl-{\alpha}-bromo$ iso-caproate e) Synthesis of $Triethyl-{\alpha}-phosphono$ iso-caproate f) Synthesis of DL-1-amino-3-methylbutylphosphonic acid 2)Synthesis of DL-1-amino-2-phenylethylphosphonic acid a) Synthesis of Diethyl phosphite b) Synthesis of Ethylchloro acetate c) Synthesis of Triethyl phospho acetate d) Synthesis of Triethyl benzyl phospho acetate e) Synthesis of DL-1-amino-2-phenylethylphosphonic acid The synthetic compounds; DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenyl ethylphosphonic acid which are essential amino acid (isoleucine, phenylalanine)analogue are supplemented to the animal diet at the level of 0.2% and 0.4% for isoleucine analogue and 0.35% and 0.7% for phenylalanine analogue. The plain isoleucine and phenylalanine at the same level in the diet are fercilitated as comparable groups in this study. Two sets of experience including 100 male rats were carried out for seven weeks each total 14 weeks. During this period, urine samples, and each big organs were collected for the analysis of total nitrogen, phosphorus, and glycogen contents in the individual samples by Micro Kjeldahl Fisk & Subbarow and Nelson Somogye, method. 1) The result of the project a) The yield of DL-1-amino-3-methylbutylphosphonic acid and DL-1-amino-2-phenylethylphosphonic acid showed low tendency at the level of 12.5% and 20% Melting point of those two compounds were very high and the ${\alpha}-amino$ group in the synthetic compounds showed positive reaction with ninhydrin in the violet color. b) Ail the experimental groups included in this study revealed statistically no significant difference in the organ weight, total body nitrogen retention and urinary phosphorus excretion This means isoleucine aminophosphonic acid and Phenylalanine aminophosphonic acid were utilized in the body as much as the plain amino acids, isoleucine and phenylalanine did. c) The glycogen contents in the liver of the phenylalaine aminophosphonic acid gruop showed higher statistically significant(p<0.05) in the comparision with the group of the Phenylalanine and the Standard-2. It was noteworthy that the higher glycogen content in the liver might indicate the significance in the incorporation of phenylalanine aminophosphonic acid into the intermediate of tricarboxylic acid cycle as activated state.

  • PDF

Nutritional and Biochemical Studies on the Pollen Loads -2. Amino Acid Composition of Sunflower Pollen Load and Its Effects on the Hepatic Alcohol Dehydrogenase(ADH) Activity in Rat- (화분립(花紛粒)의 영양생화학적(營養生化學的) 연구(硏究) -2. 해바라기 화분립(花紛粒)의 아미노산조성(産組成)과 RAT 간(肝) Alcoholdehydrogenase 활성(活性)에 미치는 영향(影響))

  • Yoon, Soo-Hong;Ahn, Jyung-Im;Kwon, Jung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 1985
  • For the purpose of investigating the influence of pollen load un alcohol metabolism in rat, we analyzed quantitatively amino acids of pollen load, and investigated the changes of hepatic alcohol dehydrogenase(ADH) activity and hepatocyte morphology in rat administrated various concentrations of alcohol and various amounts of pollen load. 18 species of amino acids including phenylalanine in the sunflower pollen load were quantitatively analyzed, and it was found that the amount of phenylalanine, leucine, threonine, lysine are especially higher than that of the other amino acids. The liver ADH activity of experimental animals decreased with the proportion of ethanol concentration much more in ethanol administrated group than in control group, while increased in pollen load mixed with ethanol administrated group, but didn't increased as much as that in control group. In any case the less the degree of ethanol concentration was administrated, the higher the liver ADH activity increased. There was fat infiltration in the hepatocyte of ethanol administrated animals, and remarkably little fat infiltration in that of animals administrated pollen load mixed with ethanol.

  • PDF

Modulation of Phosphoenolpyruvate Metabolism of Anaerobiospirillum succiniciproducens ATCC 29305

  • Yoo, Jin Young;J. Gregory Zeikus
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 1996
  • Modulation of the catabolic PEP-pathway of Anaerobiospirillum succiniciproducens was tried using some enzymatic inhibitors such as gases and chemicals in order to enhance succinic acid production. 10$\%$ CO increased the succinic acid/acetic acid (S/A) ratio but inhibited growth as well as production of succinic and acetic acid. Hydrogen gas also increased the S/A ratio and inhibited the synthesis of pyruvate: ferredoxin oxidoreductase when used in mixture with $CO_2$, Catabolic repression by acetic, lactic and formic acid was not recognized and other modulators such as glyoxylate, pyruvate derivatives, arsenic salt, phosphate and sulfate were shown not to be effective. Magesium carbonate was shown effective for repressing acetate production. Palmitic acid, myristic acid and phenylalanine did not affect acetate production but carprylic acid completely inhibited growth.

  • PDF

Transcriptomic Analysis of Genes Modulated by Cyclo($\small{L}$-Phenylalanine-$\small{L}$-Proline) in Vibrio vulnificus

  • Kim, In Hwang;Son, Jee-Soo;Wen, Yancheng;Jeong, Sang-Min;Min, Ga-Young;Park, Na-Young;Lee, Keun-Woo;Cho, Yong-Joon;Chun, Jongsik;Kim, Kun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1791-1801
    • /
    • 2013
  • Diketopiperazine is produced by various organisms, including bacteria, fungi, and animals, and has been suggested as a novel signal molecule involved in the modulation of genes with various biological functions. Vibrio vulnificus, which causes septicemia in humans, produces cyclo($\small{L}$-phenylalanine-$\small{L}$-proline) (cFP). To understand the biological roles of cFP, the effect of the compound on the expression of the total mRNA in V. vulnificus was assessed by next-generation sequencing. Based on the transcriptomic analysis, we classified the cFP-regulated genes into functional categories and clustered them according to the expression patterns resulted from treatment with cFP. From a total of 4,673 genes, excepting the genes encoding tRNA in V. vulnificus, 356 genes were up-regulated and 602 genes were down-regulated with an RPKM (reads per kilobase per million) value above 3. The genes most highly induced by cFP comprised those associated with the transport and metabolism of inorganic molecules, particularly iron. The genes negatively regulated by cFP included those associated with energy production and conversion, as well as carbohydrate metabolism. Noticeably, numerous genes related with biofilm formation were modulated by cFP. We demonstrated that cFP interferes significantly with the biofilm formation of V. vulnificus.

Studies on the Free Amino Acids Metabolism in Germinating Mung Bean by Paper Chromatography. (Part $1{\sim}2$) (Parkt 1). Variation of free Amino acids and Amides contents in germinating Mung Bean (페파크로마토그라피에 依한 發芽綠豆의 遊離아미노酸代謝의 硏究 (第 1 報${\sim}$第 2 報) (第 1 報) 綠豆發芽에 따르는 遊離아미노酸 及 아미드의 變動에 關하여)

  • Kim, Tae-Rin;Song, Chang-Won
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1961
  • Ethanol extracts of Mung Bean seeds and seedings were analysed by 2-dimensional and circular paper partion chromatography for Nitrogen compounds as a part of the study on the Amino acids metabolism. In the seeds, 18 ninhydrin positive substances were present, before germination, but the number increased to 21 after germination. There were 3 unknown substances and one of it formed newly after germination. After 2-days germination, the amount of amides, such as Asparagine and Glutamine. where increased very large which were very small amount before it. Those were accumulated more in dark place than in light and the amount of Asparigine were more than that of Glutamine. Through the germination, there were large amount of Glutarmic acid, Aspartic acid and Alanine which seems to be concerned in transamination reaction in seedings. Valine, Leucine, and Phenylalanine increased to considerable amount after germination. This is very remarkable fact as those Amino acids were reported to be concerned in transamination reaction recently. ${\gamma}$-amino butyric acid was detected in both Cotyledon and Embroy through the germination. It seemed that there is no any Nitrogen Metabolism in the unbroken seed even if it is preserved very long period.

  • PDF