• Title, Summary, Keyword: Phytoncide

Search Result 57, Processing Time 0.046 seconds

Preparation and Release Characterization of Sodium Alginate Bead Containing Phytoncide Oil (편백정유를 함유한 알지네이트 비드의 제조 및 방출 특성)

  • Yoon, Doo-Soo;Lee, Eung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.557-562
    • /
    • 2018
  • High molecular weight sodium alginate (HMWSA)/low molecular weight sodium alginate (LMWSA) microcapsules containing phytoncide oil were prepared with different LMWSA contents. The effects of the stirring rate and ratio of HMWSA/LMWSA on the diameter and morphology of the phytoncide/alginate beads were investigated by optical microscopy and the release behaviors of phytoncide oil from the phytoncide/alginate beads were characterized by UV/Vis. spectrophotometry. The mean particle size of the phytoncide/alginate beads decreased with increasing stirring rate and concentration of the calcium chloride solution. The surface morphology of the phytoncide/alginate beads changed from smooth surfaces to skin-like rough surfaces with increasing LMWSA content. These results were due mainly to the increased hydrophilic groups at the bead surface, resulting in an increase in the release rate of phytoncide oil in the phytoncide/alginate beads.

Phytoncide Extracted from Pinecone Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells

  • Kang, Sukyung;Lee, Jae Sung;Lee, Hai Chon;Petriello, Michael C.;Kim, Bae Yong;Do, Jeong Tae;Lim, Dae-Seog;Lee, Hong Gu;Han, Sung Gu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.579-587
    • /
    • 2016
  • Mastitis is a prevalent inflammatory disease that remains one of the main causes of poor quality of milk. Phytoncides are naturally occurring anti-inflammatory compounds derived from plants and trees. To determine if treatment with phytoncide could decrease the severity of lipopolysaccharide (LPS)-induced inflammatory responses, mammary alveolar epithelial cells (MAC-T) were pretreated with phytoncide (0.02% and 0.04% (v/v)) followed by LPS treatment (1 and 25 μg/ml). The results demonstrated that phytoncide downregulated LPS-induced pro-inflammatory cyclooxygenase-2 (COX-2) expression. Additionally, LPS-induced activation of ERK1/2, p38, and Akt was attenuated by phytoncide. Treatment of cells with known pharmacological inhibitors of ERK1/2 (PD98059), p38 (SB203580), and Akt (LY294002) confirmed the association of these signaling pathways with the observed alterations in COX-2 expression. Moreover, phytoncide attenuated LPS-induced NF-κB activation and superoxide production, and, finally, treatment with phytoncide increased Nrf2 activation. Results suggest that phytoncide can decrease LPS-induced inflammation in MAC-T cells.

Study on Timely Characteristics of Forest Phytoncide in Ulsan Metropolitan Trails (시간변화에 따른 울산지역 산책로의 피톤치드 특성연구)

  • Park, Heung Jai;Yu, Bong Gwan;Park, Sun Ho;Lee, Jin Yeol;Hahm, Yoo Sik;Jeong, Seong Wook;Byeon, Ki Yeong;Lee, Hyun Hee;Choi, Seung Hoon;Son, Ji Min;Lee, Mi Lim
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1451-1456
    • /
    • 2013
  • This study was conducted to investigate the timely characteristics of phytoncide in forest trail of Ulsan Metropolitan. Air samples were collected from July to October 2011. The phytoncide were detected and quantified using a Gas Chromatograph Mass Spectrometer(GC/MSD). This study are summarized as follows ; The highest levels of phytoncide concentration of August is higher than other months in Munsu Mt. and Samho Mt.(town mountains). The higher phytoncide emission rates found in the morning and in the evening. The concentration of phytoncide was understanded to be greatly influenced by environment change of day time.

The Effect of the Phytoncide in Decreasing the Mouth Odor (피톤치드의 입냄새 제거효과)

  • Park, Jae-Bong;Auh, Q-Schick;Chun, Yang-Hyun;Lee, Jin-Yong;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • Antimicrobial action of phytoncide in the mouth decrease odor-producing microorganisms. Also phytoncide has malodor effect by reaction with volatile sulfur compounds. Phytoncide has excellent malodor effect in microbiologically and chemically. This study prove the malodor effect of phytoncide by use ferrous sulfate. So I try to make new treatment method for halitosis. I get the results as follows. 1. The difference of mean value of absorbancy was 0.849 between the mean absorbancy of deposition by add phytoncide to saliva and the saliva only. 2. The difference of mean value of absorbancy was 0.701 between the mean absorbancy of deposition by add phytoncide to distilled water and the distilled water only. 3. The difference of mean value(0.849) in saliva by existence of phytoncide was larger than in double distilled water(0.701) by existence of phytoncide. Therefore, phytoncide make more deposition in saliva than double distilled water by reaction with sulfur compounds. As the results, phytoncide reaction with sulfur compounds in saliva. It take malodor action in liquid state effectively. It is thought, only the toothpaste it knows from in the limit which does not have a side effect by the human body it adds in the oral cavity of the mouth rinse and with the fact that it will be able to use positively in clinic.

Effect of Chamaecyparis obtusa tree Phytoncide on Candida albicans (편백 피톤치드가 Candida albicans에 미치는 영향에 대한 연구)

  • Kang, Soo-Kyung;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.35 no.1
    • /
    • pp.19-29
    • /
    • 2010
  • Phytoncide, essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Candida albicans, which is a commensal colonizer of the mucous membranes but has become an opportunistic pathogen. C. albicans was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its optical density, cell viability and morphology. As concentrations of phytoncide added to the culture medium increased, optical density and cell viability of C. albicans decreased. Minimum inhibitory concentration of phytoncide for C. albicans was observed to be 0.25%, and minimum fungicidal concentration was 0.5%. Numbers of morphologically atypical cells with electron-dense cytoplasm and granules and increased with increasing concentration of the phytoncide. At higher concentrations of phytoncide, compartments and organelles in the cytoplasm became indistinguishable. The overall results indicate that the phytoncide used for this study has a strong antimicrobial activity against C. albicans. Therefore, the phytoncide may be used as a candidate for prevention and therapeutic agent against oral candidiasis.

Production of Phytoncide from Korean Pine Cone Waste by Steam Distillation (잣송이 부산물로부터 수증기 증류법에 의한 피톤치드의 추출)

  • Kim, Bae yong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.648-658
    • /
    • 2015
  • Extraction of phytoncide oil from korea pine cone waste without damaging the pine cone tree itself was investigated using a steam distillation method. Also various components in the extracted phytoncide oil were separated using a column chromatography method. The extraction of phytoncide oil was effectively proceeded, and the maximum production yield of phytoncide oil could be obtained under $100^{\circ}C$ of distillation temperature and within 30 minute of distillation time. According to chemical analysis, it was found that the phytoncide oil from korea pine cone waste was consisted of more than 12 components such as ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, as main components. In addition, the aqueous hydrogel containing other components such as verbenone, ${\alpha}$-terpinieol, fenchol, different from components of phytoncide oil itself could be obtained through the steam distillation.

Effect of Phytoncide on Porphyromonas gingivalis (P. gingivalis에 대한 피톤치드의 항균효과)

  • Kim, Sun-Q;Shin, Mi-Kyoung;Auh, Q-Schick;Lee, Jin-Yong;Hong, Jung-Pyo;Chun, Yang-Hyun
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.137-150
    • /
    • 2007
  • Trees emit phytoncide into atmosphere to protect them from predation. Phytoncide from different trees has its own unique fragrance that is referred to as forest bath. Phytoncide, which is essential oil of trees, has microbicidal, insecticidal, acaricidal, and deodorizing effect. The present study was performed to examine the effect of phytoncide on Porphyromonas gingivalis, which is one of the most important causative agents of periodontitis and halitosis. P. gingivalis 2561 was incubated with or without phytoncide extracted from Hinoki (Chamaecyparis obtusa Sieb. et Zucc.; Japanese cypress) and then changes were observed in its cell viability, antibiotic sensitivity, morphology, and biochemical/molecular biological pattern. The results were as follows: 1. The phytoncide appeared to have a strong antibacterial effect on P. gingivalis. MIC of phytoncide for the bacterium was determined to be 0.008%. The antibacterial effect was attributed to bactericidal activity against P. gingivalis. It almost completely suppressed the bacterial cell viability (>99.9%) at the concentration of 0.01%, which is the MBC for the bacterium. 2. The phytoncide failed to enhance the bacterial susceptibility to ampicillin, cefotaxime, penicillin, and tetracycline but did increase the susceptibility to amoxicillin. 3. Numbers of electron dense granules, ghost cell, and vesicles increased with increasing concentration of the phytoncide, 4. RT-PCR analysis revealed that expression of superoxide dismutase was increased in the bacterium incubated with the phytoncide. 5. No distinct difference in protein profile between the bacterium incubated with or without the phytoncide was observed as determined by SDS-PAGE and immunoblot. Overall results suggest that the phytoncide is a strong antibacterial agent that has a bactericidal action against P. gingivalis. The phytoncide does not seem to affect much the profile of the major outer membrane proteins but interferes with antioxidant activity of the bacterium. Along with this, yet unknown mechanism may cause changes in cell morphology and eventually cell death.

The Effect of S. thermophilus Isolated from Saliva Treated with Phytoncide on P. gingivalis (피톤치드 처리 후 구강 내 잔존 S. thermophilus의 P. gingivalis에 대한 효과)

  • Jung, Sung-Hee;Auh, Q-Schick;Chun, Yang-Hyun;Hong, Jung-Pyo
    • Journal of Oral Medicine and Pain
    • /
    • v.34 no.1
    • /
    • pp.23-37
    • /
    • 2009
  • The antibacterial effect of phytoncide on Porphyromonas gingivalis, which is the main causative agent of periodontal disease and halitosis, has been reported. However, little is known about its effect on normal oral microflora. The present study was performed to observe the effect of phytoncide on oral normal microflora and the inhibitory effect of surviving resident oral bacteria on P. gingivalis. In this study, saliva from each of 20 healthy subjects was treated with 1% phytoncide from Japanese Hinoki (Chamaecyparis obtusa Sieb. et Zucc.). Surviving salivary bacteria were isolated on blood agar plates and identified by 16S rDNA sequencing. In order to select inhibitory isolates against P. gingivalis, the isolates from the phytoncide-treated saliva were cultured with P. gingivalis. The results were as follows: 1. In general, the number of bacteria in saliva from periodontally healthy subjects was decreased when the saliva was treated with 1% phytoncide. 2. The majority of the salivary bacteria surviving the treatment of phytoncide were S. thermophilus (53%). 3. Most of the surviving salivary bacteria (72.5%) inhibit the growth of P. gingivalis A7A1-28 and P. gingivalis W83 on blood agar plates. 4. Among the surviving S. thermophilus, 85.8% of them were observed to inhibit P. gingivalis strains and 75.8% of the surviving S. sanguinis were inhibitory. Taken together, oral resident bacteria surviving phytoncide, which has been shown to inhibit P. gingivalis, may exert an additional inhibitory activity against the periodontopathic bacterium. Therefore, phytoncide can be used for preventing and ceasing the progress of periodontal disease and halitosis, and thus is expect to promote oral health.

Effects of Phytoncide Treatment on the Physicochemical, Microbiological, and Sensory Characteristics of Fresh-cut Lettuce (Phytoncide 처리가 신선편이 양상추의 저장 중 이화학적, 미생물학적 및 관능적 특성에 미치는 영향)

  • Kim, Do-Hee;Kim, Han-Bit;Moon, Kwang-Deog
    • Korean Journal of Food Preservation
    • /
    • v.20 no.2
    • /
    • pp.166-172
    • /
    • 2013
  • The effect of phytoncide solution treatment on the browning and quality of fresh-cut iceberg lettuce during storage was studied. The treatments were applied as four solutions adjusted at $10^{\circ}C$: distilled water (DW) as the control; edible ethanol (EE); 1% (v/v) phytoncide essential oil from pine needle diluted with distilled water (DP); and 1% (v/v) phytoncide essential oil diluted with edible ethanol (EP). Fresh-cut lettuce was dipped in each solution for 60 sec, was rinsed with distilled water, was packaged with an OPP film bag, and was then stored at $4^{\circ}C$ for 12 days. The EP group had a significantly high level of total soluble solids, titratable acidity, and carbon dioxide, and low total bacteria counts, pH, and oxygen. The sensory score of color in the EP group recorded a high value, but the EE and EP groups recorded low scores in aroma and taste during the storage period. Alcohol and phytoncide were vaporized by opening the package for two hours, and the score of the aroma and taste of EP showed no differences from those of the other groups. Based on the above results, it was determined that the phytoncide essential oil diluted in edible alcohol with 1% solution inhibited the browning of and microbial growth in fresh-cut lettuce, and will be a useful natural compound in maintaining the quality of fresh-cut produce.

Dietary Phytoncide Supplementation Improved Growth Performance and Meat Quality of Finishing Pigs

  • Li, Han Lin;Zhao, Pin Yao;Lei, Yan;Hossain, Md Manik;Kang, Jungsun;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1314-1321
    • /
    • 2016
  • We conducted this 10-wk experiment to evaluate the effects of dietary phytoncide, Korean pine extract as phytogenic feed additive (PFA), on growth performance, blood characteristics, and meat quality in finishing pigs. A total of 160 pigs ([Landrace${\times}$Yorkshire]${\times}$Duroc, body weight (BW) = $58.2{\pm}1.0kg$) were randomly allocated into 1 of 4 treatments according to their BW and sex, 10 replicate pens per treatment with 4 pigs per pen were used (2 barrows and 2 gilts). Dietary treatments were: CON, control diet; PT2, CON+0.02% PFA; PT4, CON+0.04% PFA; PT6, CON+0.06% PFA. Overall, average daily gain (ADG) was higher in PT4 (p<0.05) than in PT6, average daily feed intake (ADFI) was lower in PT6 than in CON (p<0.05). Besides ADFI decreased linearly (p<0.05) with the increased level of phytoncide and gain:feed ratio in PT4 treatment was higher (p<0.05) than CON treatment. During 5 to 10 weeks and overall, quadratic (p<0.05) effect was observed in ADG among the treatments. At the end of this experiment, pigs fed with PT4 diet had a greater (p<0.05) red blood cell concentration compared to the pigs fed CON diet. Water holding capacity increased linearly (p<0.05) with the increased level of phytoncide supplementation. Moreover, firmness, redness, yellowness, and drip loss at day 3 decreased linearly (p<0.05) with the increase in the level of phytoncide supplementation. In conclusion, inclusion of phytoncide could enhance growth performance without any adverse effects on meat quality in finishing pigs.