• Title, Summary, Keyword: Pneumatic Cylinder

Search Result 165, Processing Time 0.037 seconds

Experimental Study on Cushioning Characteristics of Pneumatic Cylinder with Meter-In/Meter-Out Control

  • Kim, Dong-Soo;Lee, Sang-Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.57-65
    • /
    • 2002
  • Pneumatic cylinder is widely used fur mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates the destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under conditions of high velocity and load. In this research pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system which is set vertically with multiple orifice cushion sleeve is controled with the meter-in/out control system. This study examines the dynamic characteristics of pneumatic cylinder which are used as cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in control system.

A Study on the Design of a High-Speed Pneumatic Cushion Cylinder (고속 공기압 쿠션 실린더의 설계에 관한 연구)

  • Kim, Do-Tae;Kim, Dong-Soo;Ju, Min-Jin
    • Journal of The Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.5
    • /
    • pp.491-497
    • /
    • 2009
  • Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the stress and strain analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. A finite element analysis is carried out to compute the distribution of the displacement, stress and safety factors by using ANSYS. As a result, the structural safety factors of each parts in pneumatic cushion cylinder are evaluated and confirmed at the design specifications.

  • PDF

A Study on the Design of a Low-Friction, High-Speed Pneumatic Cylinder (저마찰 고속형 공기압 실린더의 설계에 관한 연구)

  • Kim, Do-Tae;Kim, Dong-Soo;Ju, Min-Jin
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.1230-1235
    • /
    • 2008
  • Of all of pneumatic components utilized in the make up of pneumatic circuits on either automatic assembly machine or industrial equipment, the pneumatic cylinder is more oriented toward being a structural as well as a pneumatic member. The structural design must be based to a large degree on the end of application of the cylinder on the equipment it is operating. In this paper, design studies of a double-acting pneumatic cushion type cylinder with low-friction and high-speed driving have been developed. Of interest here is to investigate the structural analysis of cylinder tube, piston rod, end cover, and to analyze the buckling of piston rod. Also, a relief valve type cushion mechanism is considered. This cushion mechanism is found to be adequate under a high-speed driving of pneumatic cylinders.

  • PDF

A Study on Validation of Accelerated Model for Pneumatic Cylinder (공기압 실린더 가속모형의 유효성 평가에 관한 연구)

  • Kang, Bo-Sik;Kim, Hyoung-Eui;Chang, Mu-Seong;Song, Chang-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1139-1143
    • /
    • 2009
  • Pneumatic cylinder is widely used as key component of various industry fields just like automation production line. Recently, people begin to pay attention to reduce development period and cost of pneumatic cylinder so research requirements of accelerated life test of pneumatic cylinder have been increased more than ever. In this research, we shall evaluate availability of acceleration model by statistical analysis of acceleration model's predicted value and life data which acquired in a real operation condition after finish accelerated life test of pneumatic cylinder. Also to predict the life of pneumatic cylinder in the operation condition we shall develop new acceleration model equations.

Displacement Control of Pneumatic Actuator Equipped with PLC and Proximity Sensors (PLC와 근접센서를 이용한 공압 실린더의 변위제어)

  • Kim, Gun-Hoi;So, Jung-Duck
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2008
  • A pneumatic system was proposed to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the proposed valve system. The proposed pneumatic system consisted of a combination of pneumatic valves, two proximity sensors, and a programmable logic controller(PLC). The position controller is based on the PLC controller connected with the proximity sensors. Displacement accuracy of the pneumatic cylinder stroke was tested by varying air pressures of the supply and discharge-side and strokes of the pneumatic cylinder. The displacement accuracy of the pneumatic cylinder stroke increased as the supply and discharge side of air pressure increased at the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with a fixed supply and discharge side of air pressure of the pneumatic cylinder as 3.5 and $4.5kg/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder(i.e., standard deviation of 0.01 mm) was obtained at the supply and discharge side of air pressure of 4.0 and $5.0kg/cm^2$, respectively, and strokes of 170 and 190 mm among arbitrarily selected supply and discharge side air pressures and strokes.

Experimental Study of Cushioning Pneumatic Cylinder with Meter In/Meter Out Control System (메타인 및 메타아웃 제어에 의한 공기압 실린더의 쿠션특성에 관한 실험적 연구)

  • 김동수;이상천
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.97-104
    • /
    • 2000
  • Pneumatic cylinder is widely used for mechanical handling systems. Often, the impact occurs at the both ends points of pneumatic cylinder and generates destructive shock with in the structural operating members of the machine or equipment. To reduce the damage of system, therefore, shock absorbing devices are required. Cushioning of pneumatic cylinders at one or both ends of piston stroke is used to reduce the shock and vibration. The cylinder body have to withstand under high velocity and load. In this research, the pneumatic cushioning cylinder moving tests have been conducted for different load mass and supply pressure. The velocity of pneumatic cylinder actuation system with multiple orifice cushion sleeve which is set vertically controled with meter-in/out system. This study examines the dynamic characteristics of pneumatic cylinder with cushion devices. It turns out that the cushion pressure is mainly a function of the external load rather than the supply pressure. The cushion region characteristics was also revealed in the meter-in system.

  • PDF

Position Control of a Pneumatic Cylinder Considering Friction Compensation (마찰력 보상을 고려한 공기압 실린더의 위치제어)

  • Kim, D.T.;Zhang, Z.J.
    • Journal of Drive and Control
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • The paper describes a technique that compensates a friction in pneumatic cylinder to perform the position control. The friction is one of the most common nonlinearities present in pneumatic actuating systems. For accurate position control and low velocity control, control strategies usually rely on accurate estimation of friction. This paper presents a observer to estimate the friction force in the pneumatic cylinder from the pressures in cylinder chambers. Also, the stiction compensation of a pneumatic cylinder is obtained by adding pulses to the control signal using impulsive control. The characteristics of the pulses in impulsive control are determined from the control action. The simulation results are proved that the method proposed here is effective.

Pneumatic Cylinder Position Control Algorithm for Control Consistency (공기압 실린더의 위치제어 일관성을 위한 제어 알고리즘)

  • Lee, Ji-Hoon;Nam, Yun-Joo;Park, Myeong-Kwan
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.985-990
    • /
    • 2007
  • This paper presents a novel control algorithm for position control of pneumatic cylinder. Generally, it is difficult to control the pneumatic servo system, due to nonlinearities such as air compressibility, the opening area of the valve, and frictional force between the cylinder and the piston. Especially, it is of significant importance for the control consisten-cy to return the cylinder pressures at equilibrium point to the initial states, still with guaranteeing the continuity of the pressures. For this purpose, the proposed control algorithm makes pressures of both cylinder chambers identical in magnitude but different in direction. The effectiveness and practicability of the control algorithm for the precise position control of the pneumatic cylinder are verified through the simulation study.

  • PDF

Effect of Orifices in Cushion Sleeve on Cushion Characteristic of Pneumatic Cylinder (쿠션슬리브의 오리피스가 공압실린더의 쿠션특성에 미치는 영향)

  • 박재범;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-80
    • /
    • 2004
  • Cushion sleeves are used in pneumatic cylinders to avoid impact force arising at the end stroke part between moving piston and cylinder cover. In this study low kinds of cushion sleeves are designed, manufactured and attached to the pneumatic cylinder to be experimented. The effects of cushion sleeves on cushion characteristics are investigated. e results are as follows; the pressure variation of cushion room with orifices are inspected to be smaller than that of cushion room without orifices. So sleeves with orifices are expected as protecting from impact and vibration of pneumatic cylinder. The object of this study is to provide data on the charactristics of pneumatic cushion sleeve in case of being used in industry.

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF