• Title, Summary, Keyword: Polymer electrolyte membrane

Search Result 551, Processing Time 0.066 seconds

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

Performance of a Ceramic Fiber Reinforced Polymer Membrane as Electrolyte in Direct Methanol Fuel Cell

  • Nair, Balagopal N.;Yoshikawa, Daishi;Taguchi, Hisatomi
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.53-56
    • /
    • 2004
  • Direct Methanol Fuel Cell (DMFC) is considered as a candidate technology for applications in stationary, transportation as well as electronic power generation purposes. To develop a high performance direct methanol fuel cell(DMFC), a competent electrolyte membrane is needed. The electrolyte membrane should be durable and methanol crossover must be low. One of the approaches to increase the stability of generally used polymer electrolyte membranes such as Nafion against swelling or thermal degradation is to bond it with an inorganic material physically or chemically. In Noritake Company, we have developed a novel method of reinforcing the polymer electrolyte matrix with inorganic fibers. Methanol crossover values measured were significantly lower than the original polymer electrolyte membranes. These fiber reinforced electrolyte membranes (FREM) were used for DMFC study and stable power output values as high 160 mW/$\textrm{cm}^2$ were measured. The details of the characteristics of the membranes as well as I-V data of fuel cell stacks are detailed in the paper.

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 촉매 소재 개발을 위한 원자층증착법 연구 동향)

  • Han, Jeong Hwan
    • Journal of Korean Powder Metallurgy Institute
    • /
    • v.27 no.1
    • /
    • pp.63-71
    • /
    • 2020
  • It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.

Impedance analysis of electrochemical systems using an ion-conducting polymer electrolyte membrane (전도성 고분자 전해질막을 이용하는 전기화학적 시스템의 임피던스 해석)

  • Park, Jin-Soo;Moon, Seung-Hyeon;Kim, Chang-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • /
    • pp.1-8
    • /
    • 2004
  • Ion-conducting polymer electrolyte membranes (PEMs) have recently used in developing fuel cell or solar cell for portable, mobile and residential applications [1]. Polymer electrolyte membrane fuel cell (PEMFC), direct methanol fuel cell (DMFC), alkaline electrolyte fuel cell (AFC) and dye-sensitized solar cell have been employing the ion-conducting PEMs to complete their electrical circuits to produce electricity.(omitted)

  • PDF

Preparation of Gel Polymer Electrolyte Membranes of Polyvinyl Alcohol and Poly (acrylic acid) for Zn Air Batteries (아연공기전지를 위한 Polyvinyl Alcohol과 Poly (acrylic acid)의 블랜드를 이용한 겔 고분자 전해질막의 제조)

  • Kim, Chanhoon;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2012
  • Gel polymer electrolyte membranes were prepared from blends of polyvinyl alcohol (PVA) and poly (acrylic acid) (PAA), by solution-cast technique. The PAA content in the blend varied from 30 to 80 wt%. With the gel polymer electrolyte membranes, Zn air batteries were fabricated. The gel polymer electrolyte membranes were characterized by means of stress-strain test, impedance test. The Zn air batteries were tested by current interrupt method and galvanostatic discharge method. The tensile strength and tensile modulus decreased with increasing PAA content in the gel polymer electrolyte membrane. On the other hand, the ionic conductivity increased with increasing PAA content. The effect of ionic conductivity trend of the gel polymer electrolyte membrane in the Zn air battery was confirmed through current interrupt method and galvanostatic discharge method experiments. The battery with higher PAA content gel polymer electrolyte membrane showed lower IR drop and higher discharge capacity.

Semi-interpenetrated Polymer Network of Sulfonated Poly(Styrene-Divinylbenzene-Acrylonitrile) based on PVC Film for Polymer Electrolyte Membranes

  • Yun, Sung-Hyun;Woo, Jung-Je;Seo, Seok-Jun;Park, Jung-Woo;Oh, Se-Hun;Moon, Seung-Hyeon
    • Korean Membrane Journal
    • /
    • v.11 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • The sulfonated poly(styrene-divinylbenzene-acrylonitrile) (ST-DVB-AN) composite polymer electrolyte membrane based on the original PVC film was successfully synthesized to improve oxidative stability using semi-interpenetrated polymer network (semi-IPN). Weight gain ratio after copolymerization was enhanced by the DVB and AN contents, and the sulfonated membranes were characterized in terms of proton conductivity (k), ion exchange capacity (IEC), and water uptake ($W_U$). The effect of DVB content and AN addition were thoroughly investigated by comparing the resulted properties including oxidative stability. The obtained ST-DVB-AN composited semi-IPN membranes showed relatively high proton conductivity and IEC compared with Nafion117, and greatly improved oxidative stability of the synthesized membrane was obtained. This study demonstrated that a semi-interpenetrated sulfonated ST-DVB-AN composited membrane reinforced by PVC polymer network is a promising candidate as an inexpensive polymer electrolyte membrane for fuel cell applications.

The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell (일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가)

  • Jung, Ho-Young;Kim, Min-Woo;Lim, Ji-Hun;Choi, Jin H.;Roh, Sung-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.