• Title, Summary, Keyword: Polyurethane foam

Search Result 332, Processing Time 0.035 seconds

Mechanical Properties of Polyurethane Foam Prepared from Prepolymer with Resin Premix (Prepolymer와 Resin Premix로 부터 제조된 Polyurethane Foam의 기계적 성질)

  • Kim, Tae Sung;Park, Chan Young
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.241-248
    • /
    • 2013
  • Polyester type polyurethane foam has low hydrolysis resistance. It was overcome with addition of acrylic polyol by quasi prepolymer method. Tensile strength and hardness of polyurethane foam contained acrylic polyol was increased with increasing of acrylic polyol contents. But split tear strength and tear strength was slightly changed. Hydrolysis resistance of polyurethane foam was measured by loss % of tensile strength. It was improved with increasing of acrylic polyol contents from 25.5g to 102g.

A Study of an Effect of Tool Offset on Cutting Precision Considering Cutting Force in Polyurethane Foam Cutting (폴리우레탄폼 절삭에서 절삭력을 고려한 공구 오프셋이 가공정도에 미치는 영향에 관한 연구)

  • Min, Se-Hong;Kim, Hui-Song
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3018-3025
    • /
    • 2000
  • It is possible to shorten developing process by making model using polyurethane foam in the area of automobile development process, etc. However, this skill is too difficult to be of practical use because machining is not easy due to characteristic of polyurethane foam. Domestic and foreign automobile company use clay, polyurethane foam. etc,, those are easy to handle and to make model after completing design sketch. But these materials is difficult to the machined and be worked by humans hand, There are so many difficult problem for machining by making model using polyurethane foam since cutting of elastic body like polyurethan foam has never been studied. Therefore, in this study, it is investigated to measured cutting force that is generated in case of polyurethane foam machining, and to make systematize tool compensation of polyurethane foam cutting work on automobile model by modification of tool offset method on existing steel.

Evaluation of Smoke Density and Noxious Gas for Phenol Foam Insulation (페놀 폼 단열재의 연기밀도 및 가스유해성 평가)

  • Park, Hyung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • The smoke density and noxious gas for phenol foam and polyurethane foam were measured according to test methods in ASTM E 662 and KS F 2271. It was observed that phenol foam had the possibility of application for sandwich panel and board compared with polyurethane foam. In the experimental results, phenol foam showed comparatively excellent property than polyurethane foam in smoke density and noxious gas. The polyurethane foam showed comparatively high smoke density and didn't meet the evaluation standard of noxious gas in KS F 2271. From the experimental results of smoke density and noxious gas, it can be said that phenol foam has both comparatively good safety and high possibility of application than polyurethane foam in the building fire of sandwich panel structure because of lower smoke density and noxious gas.

Immobilization of Rhizopus chinesis using Polyurethane Foams (Polyurethane Foam을 이용한 리파아제 생산 균주 Rhizopus chinesis의 고정화)

  • 주지선;류희욱장용근
    • KSBB Journal
    • /
    • v.7 no.3
    • /
    • pp.172-178
    • /
    • 1992
  • A simple and effective method has been developed for the immobilization of lipase producing Rhizopus chinensis on polyurethane foam. In this method, the fungal cells with 1, 3 specific lipase in there inside are immobilized within the foam matrix. Four types of commercially available polyurethane foam were tested. The ultimate purpose of the process is to produce low-cost biocatalysts for lipase-catalyzed reactions, which are being increasingly used for industrial applications. Effects of several parameters were studied on the cell loading and the hydrolytic activity of intracellular lipase after acetone drying. These parameters were the type, size, and amount of polyurethane foam. In all the cases, the intracellular lipase activity obtained with the foam was approximately twice greater than that obtained in the absence of the foam.

  • PDF

Numerical analysis on foam reaction injection molding of polyurethane, Part A: Considering re-condensation of physical foam agent

  • Han, HyukSu;Nam, Hyun Nam;Eun, Youngkee;Lee, Su Yeon;Nam, Jeongho;Ryu, Jeong Ho;Lee, Sung Yoon;Kim, Jungin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.5
    • /
    • pp.209-214
    • /
    • 2016
  • Foam reaction injection molding (FRIM) is a widely used process for manufacturing polyurethane foam with complex shapes. Numerical model for polyurethane foam forming reaction during FRIM process has been intensively investigated by a number of researchers to precisely predict final shapes of polyurethane foams. In this study, we have identified a problem related with a previous theoretical model for polyurethane foam forming reaction. Thus, previous theoretical model was modified based on experimental and computational results.

A Study on the Standardization of the Polyurethane Soft Foam for Thermally Insulated Container (냉동 컨테이너용 경질 폴리우레탄 폼 단열재 표준연구)

  • Lee, Joon-Hyuk;Park, Yong-Geun;Joo, A-Ram;Jung, Yong-An;Lee, Soon-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.108-114
    • /
    • 2017
  • According to an increase in demand for polyurethane soft foam for thermally insulated containers, the purpose of this study is based on redefining existing rigid polyurethane foam insulation KS standard which has been limited to building material-based authentication techniques. Since there are arising concerns of consumer rights and safety due to humidifier fungicides and urethane track incidents, there are elements to be further researched on rigid polyurethane foam insulation for refregerated containers. Thus, we reviewed the prior standards for rigid polyurethane foam insulation and verified the validity of certification testing method for the new standard with self-foamed polyurethane.

Dynamic Response of Polyurethane Foam with Density and Temperature Effects (폴리우레탄 폼의 동적 응답에 미치는 밀도 및 온도의 영향)

  • Hwang, Byeong-Kwan;Kim, Jeong-Hyun;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Polyurethane foam is the most efficient, high-performance insulation material, used for liquefied natural gas carrier (LNGC) insulation. Because LNGC is exposed to sloshing impact load due to ship motion of 6 degrees of freedom, polyurethane foam should be sufficient dynamic properties. The dynamic properties of these polyurethane foam depends on temperature and density. Therefore, this study investigates the dynamic response of polyurethane foam for various temperature($25^{\circ}C$, $-70^{\circ}C$, $-163^{\circ}C$) and density($90kg/m^3$, $113kg/m^3$, $134kg/m^3$, $150kg/m^3$) under drop impact test with impact energy of 20J, 50J, and 80J. For dynamic response was evaluated in terms of peak force, peak displacement, absorb energy, and the mechanical property with minimized density effects. The results show the effect of temperature and density on the polyurethane foam material for the dynamic response.

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.4
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

A Study on Tool Offset for Cutting of the Polyurethane Foam (폴리우레탄폼 절삭가공시 공구보정에 관한 연구)

  • Min, Se-Hong;Kim, Hei-Song
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.31-35
    • /
    • 2000
  • After constructing master model utilizing CAD data originated by sketch, product NC data for polyurethane foam using digitized master model data. And model cutting is performed utilizing specially developed polyurethane foam cutting tool in machining center. In this study, it is discussed to construct concept of tool offset, method of tool offset and feature tolerance, etc., that is impossible for cutting of the polyurethane foam by CNC machine.

  • PDF

Crashworthy behaviour of rigid polyurethane foam under constant impact energy (동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구)

  • Munshi, Mahbubul Basit;Jeong, Kwang-Young;Choi, Young-Jong;Cheon, Seong-Sik
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF