• Title, Summary, Keyword: Postural control

Search Result 363, Processing Time 0.046 seconds

Effects of Ankle Exercise combined with Mental Practice on Postural Alignment (상상연습을 병행한 발목 운동이 자세정렬에 미치는 영향)

  • Yang, Heosong;Kang, Hyojeong;Heo, Jaewon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.6 no.2
    • /
    • pp.99-106
    • /
    • 2018
  • Purpose : Various studies effects of mental practice. However, there is a lack of research on the effects of practice on postural alignment. Therefore this study to the effect of ankle exercise combined with mental practice on postural alignment of legs. Method : Subjects were randomly assigned to mental practice group (experimental group n=15) and general exercise group (control group n=15). Postural alignment was the hip, knee, and ankle joints. When viewed from the side, an arbitrary point in front of the malleolus makes a straight line with the plumb line. Exercise was performed a week for weeks. Exercise programs included muscle strengthening, relaxation, and proprioception exercise. The experimental group mental practice. Result : Both groups showed significant differences in postural alignment ankle joint, knee joint, and hip joint. In particular, the experimental group showed a larger change than the control group. However, significant difference in postural alignment change only the knee joint (p<0.05), and there was no significant difference the hip joint (experimental group=$0.77{\pm}0.81$, control group=$0.87{\pm}1.13$) and ankle joint (experimental group=$0.52{\pm}0.63$, control group=$0.48{\pm}0.41$). Conclusion : This study suggests that mental practice is effective as an exercise method postural alignment. Mental practice also expected to be musculoskeletal disorders. Therefore, additional studies should be conducted to verify the effect of mental practice on the alignment of various parts.

Effects of Vibratory Stimulus on Postural Balance Control during Standing on a Stable and an Unstable Support (안정판과 불안정판에서 자세 균형 조절에 대한 진동자극의 영향)

  • Yu, Mi;Eun, Hey-In;Kim, Dong-Wook;Kwon, Tae-Kyu;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • The purpose of this study was to analyze the effects of vibratory stimulus as somatosensory inputs on the postural control in human standing. To study these effects, the center of pressure(COP) was observed while subjects were standing on a stable and an unstable support with co-stimulated mechanical vibrations to flexor ankle muscles(tibialis anterior tendon, achilles tendon) and two plantar zones on both foot. The COP sway measurement was repeated twice in four conditions: (1) with visual cue and vibration, (2) without visual cue and vibration, (3) with visual cue and without vibration, (4) without visual cue and with vibration. The calculated parameters were the COP sway area and the distance, the median frequency and the spectral energy of COP sway in three intervals $0.1{\sim}0.3,\;0.3{\sim}1,\;1{\sim}3Hz$. The results showed that vibratory stimulus affect postural stability. The reduction rate of the COP sway with vibratory stimulus were higher on the unstable support because the effect of postural stability increases when afferent nervous flow is more activated by vibration on unstable support. If unclear visual or vibratory information is received, one type of information is compared with the other type of sensory information. Then the input balance between visual and vibratory information is corrected to maintain postural stability. These findings are important for the rehabilitation system of postural balance control and the use of vibratory information.

A New Training System for Improving Postural Balance Using a Tilting Bed

  • Yu, Chang-Ho;Kwon, Tae-Kyu;Ryu, Mun-Ho;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.117-126
    • /
    • 2007
  • In this paper, we propose an early rehabilitation training system for the improvement of postural balance with multi-modality on a tilting bed. The integration of the visual, somatosensory and vestibular functions is significant to for maintaining the postural control of the human body. However, conventional rehabilitation systems do not provide multi-modality to trainees. We analyzed the characterization of postural control at different tilt angles of an early rehabilitation training system, which consists of a tilting bed, a visual feedback, a computer interface, a computer, and a force plate. The software that we developed for the system consists of the training programs and the analysis programs. To evaluate the characterization of postural control, we conducted the first evaluation before the beginning of the training. In the following four weeks, 12 healthy young and 5 healthy elderly subjects were trained to improve postural control using the training programs with the tilting bed. After four weeks of training, we conducted the second evaluation. The analysis programs assess (center of pressure) COP moving time, COP maintaining time, and mean absolute deviation of the trace before and after training at different tilt angles on the bed. After 4 weeks, the COP moving time was reduced, the COP maintaining time was lengthened, and the mean absolute deviation of the trace was lowered through the repeated use of vertical, horizontal, dynamic circle movement training programs. These results show that this system improves postural balance and could be applied to clinical use as an effective training system.

A Study on the Visual Stimulation Pattern Affecting Postural Balance (자세균형제어에 영향을 주는 시각자극패턴에 관한 연구)

  • Kim, H.S.;Han, B.H.;Kim, D.W.;Kim, N.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.252-255
    • /
    • 1996
  • We examined the effect of strip visual stimulation pattern on postural balance control. It was performed by using motor driven clothe panel as visual stimulation. We also investigated the usefulness of HMD in the postural balance rehabilitation training system from the view of reducing the scale of experimental system. Our result showed that strip visual pattern was effective on postural balance control. It also indicated that HMD might be applied to clinical use as a new postural balance training system.

  • PDF

Effects of Induced Fatigue of Ankle Joint Muscle on the Capability and Recovery of Postural Control during Single-Leg Stance (발목 관절 근육의 유도된 피로가 외발서기 자세제어 능력과 회복에 미치는 영향)

  • Youm, Chang-Hong;Kim, Tae-Hyeon
    • Korean Journal of Sport Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.219-228
    • /
    • 2012
  • The purpose of this study was to investigate how induced fatigue of the ankle joint muscles affects the capability and recovery of postural control during single-leg stance in healthy adults. The study population included 22 randomly recruited men and women. Postural control was performed on single-leg stance with eyes open. Ankle joint muscle was fatigued by repeated heel raises. According to the results of this study, for the anteroposterior variables, both men and women showed significantly increased center of mass velocity and decreased center of pressure 95% edge frequency immediately after fatigue. For the mediolateral variables, both men and women showed significantly increased center of mass velocity and decreased center of pressure 95% edge frequency immediately after fatigue. For the total variables, both men and women showed significantly increased center of mass averaged-velocity immediately after fatigue, and also, the center of pressure 95% confidence ellipse area significantly increased in women. Postural control variables were not significantly different for men and women at any time (Pre, P0, P10, and P20). In conclusion, the gender does not affect the capability and recovery after induced fatigue of ankle joint muscles. The effect of fatigue found for the anteroposterior and the mediolateral variables in both men and women. Furthermore ankle joint muscle fatigue led to change of postural control strategy from an ankle joint strategy towards a hip joint strategy. These changes are believed to damage postural control. The ankle joint muscle recovered from fatigue within 20 min during single-leg stance.

Effects of Freezing of Gait and Visual Information on the Static Postural Control Ability in Patients with Parkinson's Disease

  • Kim, Jung Yee;Son, Min Ji;Kim, You Kyung;Lee, Meoung Gon;Kim, Jin Hee;Youm, Chang Hong
    • Korean Journal of Sport Biomechanics
    • /
    • v.26 no.3
    • /
    • pp.293-301
    • /
    • 2016
  • Objective: The purpose of this study was to analyze the effects of freezing of gait and visual information on the static postural control ability in patients with Parkinson's Disease (PD) during the bipedal stance with feet together. Method: This study included a total of 36 patients with PD; the freezer group included 17 PD patients (age: $69.3{\pm}6.2yrs$, height: $159.6{\pm}9.0cm$, weight: $63.4{\pm}9.78kg$) and the nonfreezer group included 19 PD patients (age: $71.4{\pm}5.6yrs$, height: $155.8{\pm}7.1cm$, weight: $57.7{\pm}8.6kg$). Static postural control ability was analyzed using variables of center of pressure (COP) and dividing by mediolateral, anteroposterior, and integration factors during a bipedal stance with the eyes open and closed. Results: Freezers and nonfreezers showed increases in anteroposterior velocity, mediolateral velocity, averaged velocity, and mediolateral 95% edge frequency when visual information was blocked. Additionally, freezers had greater anteroposterior range, 95% confidence ellipse area, and COP anteroposterior mean position than nonfreezers. Conclusion: Freezers and nonfreezers showed a reduction in static postural control ability when visual information was blocked. Additionally, the results of this study found a significant difference in static postural control ability between freezers and nonfreezers with PD. In particular, anteroposterior range, 95% confidence ellipse area, and COP anteroposterior mean position might be used to distinguish between freezers and nonfreezers with PD.

Analysis of Postural Stability During Continuous External Perturbations

  • Shin, Youngkyun;Park, Gu-Bum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.21-29
    • /
    • 2013
  • The functional behaviors of human standing postural control were investigated when they were exposed to long-term horizontal vibration in the sagittal plane. For complexity of human postural control, a useful alternative method that has been based on a black-box approach was taken; that is, where the feedback mechanism was lumped into a single element. A motor-driven support platform was designed as a source of vibration. The AC Servo-controlled motors produced continuous anterior/posterior (AP) motion. The data were analyzed both in the time and frequency domain. The cross-correlation and coherency functions were estimated. Subjects behaved as a non-rigid pendulum with a mass and a spring throughout the whole period of the platform motion, as consistent with the plan chosen for this study.

Effects of Dual Tasks on Balance Ability in Patients with Cerebellar Ataxia

  • Kang, Bangsoo;Park, Jin-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.5
    • /
    • pp.292-298
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the effects of dual tasks on balance and postural control during standing in patients with cerebellar ataxia (CA). It was hypothesized that CA patients would exhibit different sway characteristics of the center of mass (COM) depending on the complexity of the secondary cognitive tasks compared with normal control subjects. Methods: A total of 8 patients with CA and age-matched healthy control subjects participated in this study. They were instructed to perform two balance tasks (non-dual and dual movement) with 3 different complexity of dual tasks. Range, variability, and velocity of COMs were measured. Results: According to the results CA patients showed deficits in balance and postural control with increased dual-task complexity during the static balance task in saggital sway movements. However, there was no significant difference in static balance in frontal sway. With higher difficulty in the cognitive task, CA patients took longer to stabilize their body center, while normal control subjects showed no change between conditions. In addition, CA patients had a greater COM resultant velocity during recovery in the dual-task condition compared with the single-task condition. These findings indicate that CA patients had defendable compensatory strategies in performing dual tasks. Conclusion: In conclusion, CA patients appeared to manage the priority to balance and postural control. Particularly in a situation with a postural threat such as when potential consequences of the loss of stability increase, they appeared to prioritize the control of balance and posture over the performance of the secondary task.

Effects of Local Vibration on Knee Joint on Postural Control (슬관절에 대한 국소 진동 적용이 자세 조절 능력에 미치는 영향)

  • Park, Soo-Jin;Bang, Hyun-Soo;Choen, Song-Hee;Kang, Jong-Ho;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.2
    • /
    • pp.195-203
    • /
    • 2007
  • Purpose : The purpose of this study was to evaluate the effects of local vibration on knee joints on ability of postural control. Methods : The subjects(50) were divided into control group(25) and vibration group(25). Vibration group was given vibration on knee joint for 10 minutes and control group was given resting for 10 minutes. All subjects of each group were tested on MFT balance tester board for 30 seconds and MFT Balance Test English 1.7 was used to measure ability of postural control pre and post test. Results : 1. Laterality didn't have statistically significant difference pre and post test in both groups(p<0.05). 2. In the control group Body stability didn't have significant difference pre and post test(p>0.05), but had significant difference in the vibration group(p<0.05). 3. At assessment Movement of COG, sector2 in the control group and sector 1, 5 in the experimental group had significant difference pre and post test(p<0.05). Conclusion : From this result vibration on knee have an effect on Body stability. Therefore, the vibration will be effective in treatment of patients who have disability of postural control.

  • PDF

Effect of Self-Postural Control with Visual Feedback in the Foot Pressures in the Subject with Forward Head Posture

  • Kim, Ju-Sang;Choi, Jin-Ho;Lee, Mi-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.153-157
    • /
    • 2017
  • Purpose: The purpose of this study was to investigate the effect of self-postural control on foot pressure in subjects with forward head posture. Methods: Forty-two healthy adults were recruited in this study. Participants were divided into two groups: The forward-head postural (FHP) group (craniovertebral angle<$53^{\circ}$, n=22) and the control group (craniovertebral angle${\geq}53^{\circ}$, n=20). In the FHP group, foot pressure was measured using three different standing postures: Comfortable standing posture (CSP), subjective neutral standing posture (SNSP), and neutral standing posture with visual feedback (NSP-VP). Each position was performed in random order. In the control group, foot pressure was measured only using the comfortable standing posture. Results: With respect to CSP and SNSP, there was a significant difference on heel pressure between the two groups (p<0.05). Regarding NSP-VP, however, there was no significant differences on heel pressure between the two groups (p>0.05). Conclusion: We suggest that cervical posture control using visual feedback has a positive effect on the distribution of foot pressure in subjects with forward head posture.