• Title, Summary, Keyword: Principal Shear Stress

Search Result 116, Processing Time 0.031 seconds

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

A stress field approach for the shear capacity of RC beams with stirrups

  • Domenico, Dario De;Ricciardi, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.515-527
    • /
    • 2020
  • This paper presents a stress field approach for the shear capacity of stirrup-reinforced concrete beams that explicitly incorporates the contribution of principal tensile stresses in concrete. This formulation represents an extension of the variable strut inclination method adopted in the Eurocode 2. In this model, the stress fields in web concrete consist of principal compressive stresses inclined at an angle θ combined with principal tensile stresses oriented along a direction orthogonal to the former (the latter being typically neglected in other formulations). Three different failure mechanisms are identified, from which the strut inclination angle and the corresponding shear strength are determined through equilibrium principles and the static theorem of limit analysis, similar to the EC-2 approach. It is demonstrated that incorporating the contribution of principal tensile stresses of concrete slightly increases the ultimate inclination angle of the compression struts as well as the shear capacity of reinforced concrete beams. The proposed stress field approach improves the prediction of the shear strength in comparison with the Eurocode 2 model, in terms of both accuracy (mean) and precision (CoV), as demonstrated by a broad comparison with more than 200 published experimental results from the literature.

A Constitutive Model for Rotation of Principal Stress Axes during Direct Simple Shear Deformation (직접단순전단변형에 따른 주응력 방향의 회전을 고려한 구성모델)

  • Park, Sung-Sik;Lee, Jong-Cheon
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.28 no.1C
    • /
    • pp.53-62
    • /
    • 2008
  • A constitutive model, which can simulate the effect of principal stress rotation associated with direct simple shear test, is proposed in this study. The model is based on two mobilized planes. The plastic strains occur from the two mobilized planes, and depend on stress state, and they are added. The first plane is a plane of maximum shear stress, which rotates about the horizontal axis, and the second plane is a horizontal plane which is spatially fixed. The second plane is used to consider the effect of principal stress rotation on simple shear tests under different stress states. The soil skeleton behavior observed in drained simple shear tests is captured in the model. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC. The model is first calibrated with drained simple shear tests on loose Fraser River sand. The measured shear stress and volume change are partially induced by principal stress rotation and compared with model calculations. The model is verified by comparing predicted and measured settlements due to rigid footing resting on loose sands. Settlements predicted by the proposed model were very similar to measured settlements. Mohr-Coulomb model can not consider the effect of principal stress rotation and its prediction was only 20% of measured settlements.

  • PDF

Undrained strength-deformation characteristics of Bangkok Clay under general stress condition

  • Yimsiri, Siam;Ratananikom, Wanwarang;Fukuda, Fumihiko;Likitlersuang, Suched
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.419-445
    • /
    • 2013
  • This paper presents an experimental study on the influence of principal stress direction and magnitude of intermediate principal stress on the undrained stress-strain-strength behaviors of Bangkok Clay. The results of torsional shear hollow cylinder and advanced triaxial tests with various principal stress directions and magnitudes of intermediate principal stress on undisturbed Bangkok Clay specimens are presented. The analysis of testing results include: (i) stress-strain and pore pressure behaviors, (ii) stiffness characteristics, and (iii) strength characteristics. The results assert clear evidences of anisotropic characteristics of Bangkok Clay at pre-failure and failure conditions. The magnitude of intermediate principal stress for plane-strain condition is also investigated. Both failure surface and plastic potential in deviatoric plane of Bangkok Clay are demonstrated to be isotropic and of circular shape which implies an associated flow rule. It is also observed that the shape of failure surface in deviatoric plane changes its size, while retaining its circular shape, with the change in direction of major principal stress. Concerning the behavior of Bangkok Clay found from this study, the discussions on the effects of employed constitutive modeling approach on the resulting numerical analysis are made.

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.5-16
    • /
    • 1996
  • Based on many experimental results on fine silica sands, the strength relation between triaxial and plane strain tests is expressed as a function of both density and mean effective principal stress at failure. Stress ratio of mean normal stress to deviatoric stress at failure is a well defined function of shear angle of friction, This ratio decreases with increasing shear angle of friction. Intermediate principal stress is also expressed in terms of major and minor principal stresses and a relatively good agreement between theoretical and observed angles of failure plane in plane strain test is confirmed.

  • PDF

A Basic Study on Torsion Shear Tests in Soils (흙의 비틀림전단시험에 관한 기초적 연구)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-28
    • /
    • 1988
  • Among several types of element tests to predict soil behalf.iota in a laboratory, the torsion shear apparatus, in which the directions of principal stresses could be rotated during shearing, wra explained. In this study, this torsion shear apparatus was improved so as to be used in tests on clay specimens . And some undrained torsion shear tests u.ere performed on remolded specimens of Ko-consolidated clay to investigate the influence of reorientation of the principal stress directions on the stress-strain behavior The soil behavior by the torsion shear apparatus without torque was compared It.ith that by the conventional triaxial compression tests . The stress path, provided by both vertical loads and torque during torsion shear tests, has much effect on the stress-strain behavior, the pore pressure and the effective principal stress ratio . The rotation angle of the principal stress and the b-value were gradually increased with increasing shear strain, but converged to the values at failure.

  • PDF

The Effects of Principal Stress Rotation in K0-Consolidated Clay (K0-압밀점토(壓密粘土)의 주응력회전(主應力回轉) 효과(効果))

  • Hong, Won Pyo
    • Journal of The Korean Society of Civil Engineers
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 1988
  • The directions of the principal strain increment, stress, and stress increment during rotation of the principal stress axes at any stress level was studied for $K_0$-consolidated clay using torsion shear apparatus with individual control of the vertical stress, the confining pressure, and the shear stress on hollow cylinder specimens under undrained and drained condition. The torsion shear tests were performed according to predetermined stress-paths, which were chosen to cover over the full range of rotation of principal stress axes. The test results indicated that the strain increment vectors at failure coincided with the stress vectors. That is, the direction of strain increment coincided with the direction of stress increment at small stress levels and with the direction of stress at higher stress levels, which indicated that the behavior of clay was transfered from elastic to plastic as the stress level was increased. The applicability of the elastoplastic theory for modeling of the behavior of clay during rotation of the principal stress axes was given.

  • PDF

Contact Characteristic and Stress Analysis of Wheel-Rail for Rolling Stock (철도차량용 휠과 레일의 접촉특성 및 응력 해석)

  • Sung, Ki-Deug;Yang, Won-Ho;Cho, Myoung-Rae;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.148-156
    • /
    • 2000
  • In this paper, we investigate contact characteristic of wheel-rail interface for rolling stock using the finite element method. Contact stress distribution due to the rail mounting slope is obtained in order to reduce the contact stress. Stress analysis of the rail, firstly, is performed one subjected to elliptical pressure based on Hertz theory. Secondly, we perform stress analysis of the rail subjected to contact stress obtained by this study. Results for the maximum shear stress, its location and the principal shear stress distribution are compared.

  • PDF

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF