• Title, Summary, Keyword: Proteins

Search Result 8,678, Processing Time 0.049 seconds

A Comparsion of Nuclei Proteins in Chicken Liver and Erythrocyte (닭의 간과 적혈구의 핵 단백질의 비교연구)

  • 한준표
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.4
    • /
    • pp.335-341
    • /
    • 1990
  • Nuclei proteins were purified from chick liver to homogeneity by means of acid extraction CM Sephadex c 25 column chromatography and Bio Rex 70 column chromatography, The molecular weight of liver Nuclei proteins 1 and 2 as estimated by electrophoresis on SDS-polycrylamide gel are 29000 and 27,000 respectively. These molecular weights are identical with those of Nuclei Proteins 1 and 2 isolated from chick erythrocyte. The liver and erythrocyte Nuclei Proteins also co-migrated in acetic acid-urea gel electrophoresis. Furthermore the anti-sera raised against liver Nuclei Proteins 1 and 2 cross-reacted with erythrocyte Nuclei Proteins 1 and 2 respectively, However the amino acid compositions of liver Nuclei Prooteins 1 and 2 were found to be different from those of corresponding erythrocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei proteins were higherocyte Nuclei proteins ; the contents of serine and proline in liver Nuclei protesins were higher than those in erythrocyte Nuclei proteins while the content of lycsine in liver Nuclei proteins was lower than the erythrocyte Nuclei proteins, These results suggest that in spite of similarities in many respects the liver and erythrocyte Nuclei proteins in chicks and different proteins.

  • PDF

Identification of SUMOylated proteins in neuroblastoma cells after treatment with hydrogen peroxide or ascorbate

  • Grant, Melissa M.
    • BMB Reports
    • /
    • v.43 no.11
    • /
    • pp.720-725
    • /
    • 2010
  • The small ubiquitin-like modifier (SUMO) proteins have been implicated in the pathology of a number of diseases, including neurodegenerative diseases. The conjugation machinery for SUMOylation consists of a number of proteins which are redox sensitive. Here, under oxidative stress ($100{\mu}M$ hydrogen peroxide), antioxidant ($100{\mu}M$ ascorbate) or control conditions 169 proteins were identified by electospray ionisation fourier transform ion cyclotron resonance mass spectrometry. The majority of these proteins (70%) were found to contain SUMOylation consensus sequences. From the remaining proteins a small number (12%) were found to contain possible SUMO interacting motifs. The proteins identified included DNA and RNA binding proteins, structural proteins and proteasomal proteins. Several of the proteins identified under oxidative stress conditions had previously been identified as SUMOylated proteins, thus validating the method presented.

Interactions between secreted GRA proteins and host cell proteins across the parasitophorous vacuolar membrane in the parasitism of Toxoplasma gondii

  • Ahn, Hye-Jin;Kim, Sehra;Kim, Hee-Eun;Nam, Ho-Woo
    • The Korean Journal of Parasitology
    • /
    • v.44 no.4
    • /
    • pp.303-312
    • /
    • 2006
  • Interactions between GRA proteins of dense granules in Toxoplasma gondii and host cell proteins were analyzed by yeast two-hybrid technique. The cMyc-GRA fusion proteins expressed from pGBKT7 plasmid in Y187 yeast were bound to host cell proteins from pGADT7-Rec-HeLa cDNA library transformed to AH109 yeast by mating method. By the selection procedures, a total of 939 colonies of the SD/-AHLT culture, 348 colonies of the $X-\alpha-gal$ positive and PCR, 157 colonies of the $X-\beta-gal$ assay were chosen for sequencing the cDNA and finally 90 colonies containing ORF were selected to analyze the interactions. GRA proteins interacted with a variety of host cell proteins such as enzymes, structural and functional proteins of organellar proteins of broad spectrum. Several specific bindings of each GRA protein to host proteins were discussed presumptively the role of GRA proteins after secreting into the parasitophorous vacuoles (PV) and the PV membrane in the parasitism of this parasite.

Psychiatric Implication of Synaptic Adhesion Molecules and Scaffold Proteins (시냅스 접착 단백질과 구조 단백질의 정신과적 의의)

  • Oh, Daeyoung
    • Korean Journal of Biological Psychiatry
    • /
    • v.17 no.3
    • /
    • pp.119-126
    • /
    • 2010
  • Synaptic adhesion molecules mediate synapse formation, maturation and maintenance. These proteins are localized at synaptic sites in neuronal axons and dendrites. These proteins function as a bridge of synaptic cleft via interaction with another synaptic adhesion molecules in the opposite side. They can interact with scaffold proteins via intracellular domain and recruit many synaptic proteins, signaling proteins and synaptic vesicles. Scaffold proteins function as a platform in dendritic spines or axonal terminals. Recently, many genetic studies have revealed that synaptic adhesion molecules and scaffold proteins are important in neurodevelopmental disorders, psychotic disorders, mood disorders and anxiety disorders. In this review, fundamental mechanisms of synapse formation and maturation related with synaptic adhesion molecules and scaffold proteins are introduced and their psychiatric implications addressed.

Application and perspectives of proteomics in crop science fields (작물학 분야 프로테오믹스의 응용과 전망)

  • Woo Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.12-27
    • /
    • 2004
  • Thanks to spectacular advances in the techniques for identifying proteins separated by two-dimensional electrophoresis and in methods for large-scale analysis of proteome variations, proteomics is becoming an essential methodology in various fields of plant sciences. Plant proteomics would be most useful when combined with other functional genomics tools and approaches. A combination of microarray and proteomics analysis will indicate whether gene regulation is controlled at the level of transcription or translation and protein accumulation. In this review, we described the catalogues of the rice proteome which were constructed in our program, and functional characterization of some of these proteins was discussed. Mass-spectrometry is a most prevalent technique to identify rapidly a large of proteins in proteome analysis. However, the conventional Western blotting/sequencing technique us still used in many laboratories. As a first step to efficiently construct protein data-file in proteome analysis of major cereals, we have analyzed the N-terminal sequences of 100 rice embryo proteins and 70 wheat spike proteins separated by two-dimensional electrophoresis. Edman degradation revealed the N-terminal peptide sequences of only 31 rice proteins and 47 wheat proteins, suggesting that the rest of separated protein spots are N-terminally blocked. To efficiently determine the internal sequence of blocked proteins, we have developed a modified Cleveland peptide mapping method. Using this above method, the internal sequences of all blocked rice proteins (i. e., 69 proteins) were determined. Among these 100 rice proteins, thirty were proteins for which homologous sequence in the rice genome database could be identified. However, the rest of the proteins lacked homologous proteins. This appears to be consistent with the fact that about 30% of total rice cDNA have been deposited in the database. Also, the major proteins involved in the growth and development of rice can be identified using the proteome approach. Some of these proteins, including a calcium-binding protein that fumed out to be calreticulin, gibberellin-binding protein, which is ribulose-1,5-bisphosphate carboxylase/oxygenase activate in rice, and leginsulin-binding protein in soybean have functions in the signal transduction pathway. Proteomics is well suited not only to determine interaction between pairs of proteins, but also to identify multisubunit complexes. Currently, a protein-protein interaction database for plant proteins (http://genome .c .kanazawa-u.ac.jp/Y2H)could be a very useful tool for the plant research community. Recently, we are separated proteins from grain filling and seed maturation in rice to perform ESI-Q-TOF/MS and MALDI-TOF/MS. This experiment shows a possibility to easily and rapidly identify a number of 2-DE separated proteins of rice by ESI-Q-TOF/MS and MALDI-TOF/MS. Therefore, the Information thus obtained from the plant proteome would be helpful in predicting the function of the unknown proteins and would be useful in the plant molecular breeding. Also, information from our study could provide a venue to plant breeder and molecular biologist to design their research strategies precisely.

  • PDF

Changes in Profiles of Major Proteins in Encysting Acanthamoeba castellanii

  • Park, Joon-Tae;Jeong, Young-Eui;Ahn, Tae-In
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.341-347
    • /
    • 2002
  • The life cycle of Acanthamoeba is comprised of two distinct stages, tropho-zoite and cyst. During periods of stress, trophozoites undergo cellular differentiation into cyst. In order to understand the cellular differentiation, ore followed changes in profiles of major proteins by 2D-PAGE and ubiqui-tinated proteins by immunoblotting with anti-ubiquitin (Ub) monoclonal antibody (mAb) as a probe. We observed 51 proteins present in trophozoite were lost with the encystment. We found that 43 proteins within 24 h, and 8 proteins in 96 h of encystment. Among them, 17 proteins were staine with anti-Ub mAb. In cysts, 16 proteins including 2 anti-Ub mAb-reactive proteins were newly synthesized. Four proteins were newly detected in 24 h-cyst and disappeared in 96 h-cyst, one protein was synthesized in 24-96 h-cyst and disappeared in 168 h-cyst, and 11 proteins appeared upon en-cystment and were present in all cyst stages. We identified a cyst specific 33 kDa protein as subtilisin-like serine proteinase by N-terminal sequencing. Identification of these proteins lost and newly synthesized with encystment would improve our understanding of cysting protozoan parasites.

Analysis of Hanwoo Loin Proteome by 2-D Gel Electrophoresis and Peptide Mass Fingerprinting

  • Lim, Jin-Kyu;Pyo, Jae-Hoon;Lee, Hwa-Jin;Jung, Il-Jung;Park, Young-Sik;Yeo, Young-Kuen;Kim, Jeong-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.4
    • /
    • pp.432-436
    • /
    • 2002
  • A proteomic map of Hanwoo loin was obtained using 2-D SDS-PAGE and mass spectrometric analysis: 27 bovine proteins plus 2 proteins having similarities to other mammal proteins out of 52 proteins analyzed. The identified proteins consisted of 50 % basic house keeping proteins involved in metabolism, 30% muscle proteins, and other miscellaneous proteins. Many proteins on the 2-D gel with different molecular weights and isoelectric points were identified as same proteins due to posttranslational modification. As many of the identified house keeping proteins showed the high sequence similarities to other mammal equivalent proteins, searching the mammal databases could confirm the annotation. The preliminary identification of the proteome in bovine loin tissue could reveal the functions of proteins at over 50 % of chance with high fidelities. Using the established loin proteome map, proteomic difference between 1 yr and 2 yr Hanwoo loin tissues were compared on 2D gel. Regardless of the difficulty normalizing protein concentrations and sample-to-sample variations, three unidentified proteins and myoglobin were selected as up-regulated proteins during the fat deposition period. This study contributes to a move thorough and holistic understanding of beef meat, helping to build the basis for future identification of new markers for good quality meat.

Gecko proteins induce the apoptosis of bladder cancer 5637 cells by inhibiting Akt and activating the intrinsic caspase cascade

  • Kim, Geun-Young;Park, Soon Yong;Jo, Ara;Kim, Mira;Leem, Sun-Hee;Jun, Woo-Jin;Shim, Sang In;Lee, Sang Chul;Chung, Jin Woong
    • BMB Reports
    • /
    • v.48 no.9
    • /
    • pp.531-536
    • /
    • 2015
  • Gecko proteins have long been used as anti-tumor agents in oriental medicine, without any scientific background. Although anti-tumor effects of Gecko proteins on several cancers were recently reported, their effect on bladder cancer has not been investigated. Thus, we explored the anti-tumor effect of Gecko proteins and its cellular mechanisms in human bladder cancer 5637 cells. Gecko proteins significantly reduced the viability of 5637 cells without any cytotoxic effect on normal cells. These proteins increased the Annexin-V staining and the amount of condensed chromatin, demonstrating that the Gecko proteinsinduced cell death was caused by apoptosis. Gecko proteins suppressed Akt activation, and the overexpression of constitutively active form of myristoylated Akt prevented Gecko proteins-induced death of 5637 cells. Furthermore, Gecko proteins activated caspase 9 and caspase 3/7. Taken together, our data demonstrated that Gecko proteins suppressed the Akt pathway and activated the intrinsic caspase pathway, leading to the apoptosis of bladder cancer cells. [BMB Reports 2015; 48(9): 531-536]

Proteins Heading for the Chloroplast (엽록체로 향하는 단백질)

  • 홍주태
    • Journal of Plant Biology
    • /
    • v.33 no.1
    • /
    • pp.81-84
    • /
    • 1990
  • The chloroplast has been the prime light-energy harvesting organelle on earth. It also carries out several key metabolic processes, such as lipid synthesis and nitrogen metabolism. Even though the chloroplast has its own genome, its coding capacity can afford only dozens of proteins, and most of the proteins functioning in the chloroplast are imported from the cytosol where nuclear encoded chloroplast genes are synthesized on free cytosokic ribosomes. Precursor proteins synthesized on cytosolic ribosomes have transit peptides at the amino termini of the proteins, and the transit peptide is sufficient to transfer chloroplast proteins from the cytosol into the chloroplast. When comparing amino acid sequences duduced from the nucleotide sequences of the clones of the chloroplast proteins, high homologies can be found among the transit peptides of proteins with the same function. Overall amino acid compositions of the transit peptides show amphiphilic characters of the transit peptides, and the amphiphilicity indicates that three dimensional structure of the transit peptide is responsible for the translocation of the chloroplast proteins.

  • PDF

SR Proteins: Binders, Regulators, and Connectors of RNA

  • Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.