• Title/Summary/Keyword: Pure Titanium

Search Result 196, Processing Time 0.114 seconds

A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Lee, Chang-Je;Kil, Byung-Lea
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

Scanning Electron Microscopic Study of the Effects of Citric Acid on the Change of Implant Surface According to Application Time (구연산의 적용시간에 따른 임플란트 표면변화에 대한 주사전자현미경적 연구)

  • Song, Woo-Seok;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.697-709
    • /
    • 2002
  • The present study was performed to evaluate the effect of citric acid on the change of implant surface microstructure according to application time. Implants with pure titanium machined surface, titanium plasma-sprayed surface, and sand-blasted, large grit, acid etched surface were utilized. Implant surface was rubbed with pH 1 citric acid for $\frac{1}{2}$ min., 1 min., 1 $\frac{1}{2}$ min., 2 min., and 3min, respeaively in the test group and implant surface was not treated in the control group. Then, the specimens were processed for scanning electron microscopic observation. The following results were obtained. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In titanium plasma-sprayed surfaces, round or amorphous particles were deposited irregularly. The irregularity of titanium plasma-sprayed surfaces conditioned with pH 1 citric acid was lessened and the cracks were increased relative to the application time of pH 1 citric acid. 3. Sand-blasted, large grit, acid etched surfaces showed the macro/micro double roughness. The application of pH 1 citric acid didn't change the characteristics of the sand-blasted, large grit, acid etched surfaces. In conclusion, the application of pH 1 citric acid to titanium plasma-sprayed surface is improper. And pure titanium machined surface implants and sand-blasted, large grit, acid etched surface implants can he treated with pH 1 citric acid for peri-implantitis treatment if the detoxification of these surfaces could be evaluated.

The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (I) - The Effect According to Applying Slope Up & Down - (순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(I) - 슬롭 업 & 다운 적용에 따른 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.62-68
    • /
    • 2016
  • Laser welding has superior characteristic such as low distortion, high welding speed, easy automation and real time control. But it is easy to occur weld defects such as porosity, crater, humping bead in the area of welding start and end. These weld defects can be suppressed by applying the wave shape control. In this study CW fiber laser was used for welding of $0.5mm^t$ pure titanium. Penetration properties were evaluated with the time of slope up and down. After then the bead shape was observed, and the maximum depth and the area of crater were measured. The bead shape of welding start area changed to be sharp with increase of slope up time and non-weld area of welding start increased. The crater and humping bead were suppressed with slope down time. The cooling rate of crater area was understood through measure of the hardness. Also, The distribution tendency of alloying elements was observed by EPMA and EDS. When wave shape control didn't applied to weld, the hardness of end weld increased due to rapid cooling rate and the hardness of rear part in the crater was higher than that of fore part. On the other hand, when the wave shape control was used for end weld, the increase of hardness in the end weld couldn't be found due to gradual cooling rate.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 -)

  • Kim, Jong-Do;Kil, Byung-Lea;Kwak, Myung-Sub;Song, Moo-Keun
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.

THE EVALUATION OF CYTOTOXICITY AND BIOCOMPATIBILITY OF TI-TA-NB-BASE ALLOY (Ti-Ta-Nb계 합금의 세포독성과 생체적합성의 평가)

  • Cui De-Zhe;Vang Mong-Sook;Yoon Taek-Rin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.250-263
    • /
    • 2006
  • Statement of problem: Ti-alloy has been used widely since it was produced in the United States in 1947 because it has high biocompatibility and anticorrosive characteristics. Purpose: The pure titanium, however, was used limitedly due to insufficient mechanical charateristics and difficult manufacturing process. Our previous study was focused on the development of a new titanium alloy. In the previous study we found that the Ti-Ta-Nb alloy had better mechanical characteristics and similar anticorrosive characteristics to Ti-6Al-4V Material and methods: In this study, the cytotoxicity of the Ti-Ta-Nb alloy was evaluated by MTT assay using MSCs(Mesenchaimal stem cells) and L929 cells(fibroblast cell line). The biocompatibility of the Ti-Ta-Nb alloy was performed by inserting the alloy into the femur of the rabbits and observing the radiological and histological changes surrounding the alloy implant. Results: 1. In the cytotoxicity test using MSCs, the 60% survival rate was observed in pure titanium, 84% in Ti-6Al-4V alloy and 95% in Ti-10Ta-10Nb alloy. 2. In the animal study, the serial follow-up of the radiographs showed no separation or migration revealing gradual bone ingrowth surrounding the implants. Similar radiographic results were obtained among three implant groups pure titanium, Ti-6Al-4V alloy and Ti-10Ta-10Nb alloy. 3. In the histologic examination of the bone block containing the implants. the bone ingrowth was prominent around the implants with the lapse of time. There was no signs of any tissue rejection, degeneration, or inflammation. Active bone ingrowth was observed around the implants. In the comparison of the three groups, the rate of bone ingrowth was better in the Ti-10Ta-10Nb alloy group than those in pure titanium group or Ti-6Al-4V alloy group. In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects. Conclusion: In conclusion, Ti-10Ta-10Nb alloy revealed better biocompatibility in survival rate of the cells and bone ingrowth around the implants. Therefore we believe a newly developed Ti-10Ta-10Nb alloy can replace currently used Ti-6Al-4V alloy to increase biocompatibility and to decrease side effects.

MECHANICAL PROPERTIES OF TITANIUM CONNECTORS TREATED BY VARIOUS WELDING TECHNIQUES (용접방법에 의한 타이타늄 연결부의 기계적 성질에 관한 연구)

  • Lee, Soo-Young;Chang, Ik-Tae;Heo, Seong-Joo;Yim, Soon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.545-566
    • /
    • 1999
  • The use of pure titanium and titanium alloys have been increased recently in fixed, removable prosthodontics and implant fields as a framework. But when they were used for superstructures of implant or metal framework of removable prosthesis, welding is necessary to reconnect the fracture site to control the casting distortions. To overcome the difficulties in soldering the titanium due to high oxidation property, much effort have been devoted. In this study, some of mechanical properties were compared between pure titanium and Ti-6Al-4V alloy by using after welding, electron beam welding technique and tungsten arc welding. Mechanical properties such as tensile strength, yield strength, elongation and microhardness were measured. And, in order to compare the effect of welding site and surrounding metal tissue according to the welding condition, SEM photographs were taken and element distribution was observed by Wave Dispersion Spectroscopy. Through analyses of the data, following results were obtained; 1. In items such as tensile strength, yield strength and elongation according to the welding techniques of pure titanium, only tungsten arc welded group showed significant lower value than other groups(P<0.05). 2. In items such as tensile strength and yield strength according to the welding techniques of Ti-6Al-4V alloy, control group and tungsten arc welded group showed significant difference among all the groups(P<0.05). 3. Ti-6Al-4V alloy exhibited significantly greater elongation than control group when the laser welding method and electron beam welding method were used, and elongation showed increasing tendency. 4. Pure titanium specimens exhibited increasing tendency of microhardness regardless of the weld-ing technique applied, and especially tungsten arc welded group demonstrated a great increase of microhardness than parent metal. 5. There was no hardness change in laser welded group and electron beam welded group of Ti-6Al-4V alloy, but in tungsten arc welded group, hardness changed greatly from parent metal to weld seam. 6. Through the metallographic examination and scanning electron microscopy, laser welding caused central fusion and recristallizations were formed and tungsten arc welding caused localized fusion to 0.3-0.7mm from the surface.

  • PDF

Evaluation of cytotoxicity and bone affinity on the surface of a titanium phosphide (Titanium Phosphide 표면에 대한 세포독성 및 골친화성의 평가)

  • Lee, Kang-Jin;Kim, Chun-Seok;Kim, Hyung-Soo;Yum, Chang-Yup;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.329-346
    • /
    • 1997
  • Dental implants have been developed for enhancement of osseointegration. Biocompatibility, bone affinity and surface characteristics of dental implants are very important factors for osseointegration. The aim of the present study was to determine the cytotoxicity and the bone affinity of titanium phosphide(Ti-P) implant material. The Ti-P surface was obtained by vacuum sintering of titanium within compacted hydroxyapatite powder. The composition and the chemical change of the surface were determined by Auger electron spectroscopy. The in vitro cytotoxicity was evaluated by the viability of the bone cells and macrophages obtained from chicken embryo and rat,s peritonium, respectively. For the comparative evaluation, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 1O.0mm in diameter and 5.0mm in height, were immersed separately in bone cells and macrophages for 10 days. For the evaluation of the in vivo bone affinity, 316L stainless steel, commercially pure titanium and Ti-P materials, prepared in size of 5.0mm in diameter and 10.0mm in length, were implanted after drilling in diameter 5.5mm in femurs of 2 dogs weighing 10Kg more or less. Six weeks after implantation the specimens were prepared for histopathological examination and were observed under light microscope. In comparison of in vitro bone cell viability, Ti-P and commercially pure titanium groups were not significantly different from control group (p>O.1), but 316L stainless steel group was significantly lower than control group(p<0.05). There was no statistical difference in the viability of macrophages between 3 different groups and control group(p>O.l). In comparison of in vivo study, 316L stainless steel and commercially pure titanium showed fibrous encapsulation, but Ti-P showed remarkable new bone formation without any fibrous tissue. The results demonstrate that Ti-P has favorable biocompatibility and bone affinity, and suggest that dental implants with Ti-P surface may enhance osseointegration.

  • PDF

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium (적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근)

  • Kim, K.T.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.310-316
    • /
    • 2018
  • The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

Production of Titanium Powder by Electronically Mediated Reaction (EMR) (도전체 매개반응(EMR)법에 의한 Ti 분말 제조)

  • Park Il;Chu Yong Ho;Lee Chul Ro;Lee Oh Yeon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.857-862
    • /
    • 2004
  • Production of titanium powder directly from tantalum oxides ($TiO_2$) pellet through an electronically mediated reaction (EMR) by calciothermic reduction has been investigated. Feed material ($TiO_2\;pellet$) and reductant (Ca-Ni alloy) were charged into electronically isolated locations in a molten calcium chloride ($CaCl_2$) bath at $950^{\circ}C$. The current flow through an external circuit between the feed (cathode) and reductant (anode) locations was monitored during the reduction of $TiO_2$. The current approximately 3.2A was measured during the reaction in the external circuit connecting cathode and anode location. After the reduction experiment, pure titanium powder with low nickel content was obtained even though Ca-Ni alloy was used as a reductant. These results demonstrate that titanium powder can be produced without direct physical contact between the feed and reductant. In certain experimental conditions, pure titanium powder with approximately $99.5\;mass\%$ purity was successfully obtained.