Hadoop is a framework to process large data sets in a distributed way across clusters of nodes. It has been a popular platform to process big data, but in recent years, other platforms became competitive ones depending on the characteristics of the application. Spark is one of distributed platforms to enable real-time data processing and improve overall processing performance over Hadoop by introducing in-memory processing instead of disk I/O. Whereas Hadoop is designed to work on Java and data analysis is processed using Java API, Spark provides a variety of APIs with Scala, Python, Java and R. In this paper, the goal is to find out whether the APIs of different programming languages af ect the performances in Spark. We chose two popular APIs: Python and Scala. Python is easy to learn and is used in AI domain in a wide range. Scala is a programming language with advantages of parallelism. Our experiment shows much faster processing with Scala API than Python API. For the performance issues on AI-based analysis, further study is needed.